Advertisement

Semi-automated Vocabulary Building for Structured Legal English

  • Shashishekar Ramakrishna
  • Adrian Paschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8620)

Abstract

Structured English has been applied as computational independent language for defining business vocabularies and business rules, e.g., in the context of OMG’s Semantics and Business Vocabulary Representation (SBVR). It allows non-technical domain experts to engineer knowledge in natural language, but with an underlying semi-formal semantics which eases the automation of machine transformation into formal knowledge representations and logic-based machine interpretation. We adapt this approach to the legal domain in order to support legal domain experts in their task to build legal vocabularies and legal rules in Structured English from legal texts. In this paper we contribute with a semi-automated vocabulary and rule development process which is supported by automated suggestions of legal concepts computed by a semantic legal text analysis. We implement a proof-of-concept in the KR4IPLaw tool, which enables legal domain experts to represent their knowledge in Structured English. We evaluate the proposed approach on the basis of use cases in the domain of IP and patent law.

Keywords

Controlled Natural Language SBVR Structured English Legal Norms LegalRuleML 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palmirani, M., Contissa, G., Rubino, R.: Fill the gap in the legal knowledge modelling. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 305–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    OMG: Semantics of Business Vocabulary and Business Rules (SBVR)- Version 1.2. Technical Report November, Object Management Group (2013)Google Scholar
  3. 3.
    Ramakrishna, S., Paschke, A.: A Process for Knowledge Transformation and Knowledge Representation of Patent Law. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 311–328. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Ramakrishna, S., Paschke, A.: Bridging the gap between Legal Practitioners and Knowledge Engineers using semi-formal KR. In: The 8th International Workshop on Value Modeling and Business Ontology, VMBO, Berlin (2014)Google Scholar
  5. 5.
    Fuchs, N.E., Schwitter, R.: Attempto controlled english (ace). arXiv preprint cmp-lg/9603003 (1996)Google Scholar
  6. 6.
    Paris, C., Linden, K.V.: DRAFTER: An Interactive Support Tool for Writing Multilingual Instructions. IEEE Computer, Special Issue on Interactive NLP (July 1996)Google Scholar
  7. 7.
    Sullivan, D.E.: Legislative drafting and legal manual (2003)Google Scholar
  8. 8.
    Kuhn, T.: Controlled Natural Language and Opportunities for Standardization. In: International Workshop on Terminology, Languages, and Content Resources (June 2013)Google Scholar
  9. 9.
    Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework. In: Proceedings of the 16th Annual International Conference on Automated Software Engineering, ASE 2001, pp. 273–280. IEEE (2001)Google Scholar
  10. 10.
    Johnsen, A.S.: Semantisk modellering av juridisk regelverk med bruk av SBVR - en brobygger mellom jus og IT. Master thesis, University of Oslo (2011)Google Scholar
  11. 11.
    Johnsen, A.S., Berre, A.J.R.: A bridge between legislator and technologist - Formalization in SBVR for improved quality and understanding of legal rules. In: International Workshop on Business Models, Business Rules and Ontologies, Bressanone, Brixen, Italy (2010)Google Scholar
  12. 12.
    USC: Title 35 of the United States Code (1952)Google Scholar
  13. 13.
    Paschke, A.: OntoMaven API4KB - A Maven-based API for Knowledge Bases. In: 6th International Semantic Web Applications and Tools for the Life Science (SWAT4LS 2013), Edinburgh, UK, December 10-12 (2013)Google Scholar
  14. 14.
    Paschke, A.: OntoMaven. In: 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE 2013), Berlin, Germany, December 2-5 (2013)Google Scholar
  15. 15.
    Turian, J.: Using AlchemyAPI for Enterprise-Grade Text Analysis. Technical report, AlchemyAPI (August 2013)Google Scholar
  16. 16.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: Shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems. I-Semantics 2011, pp. 1–8. ACM, New York (2011)Google Scholar
  17. 17.
    Van Erp, M., Rizzo, G., Troncy, R.: Learning with the web: Spotting named entities on the intersection of nerd and machine learning. In: Proceedings of the 3rd Workshop on Making Sense of Microposts (# MSM 2013) (2013)Google Scholar
  18. 18.
    Draicchio, F., Gangemi, A., Presutti, V., Nuzzolese, A.G.: FRED: From Natural Language Text to RDF and OWL in One Click. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 263–267. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Gangemi, A., Draicchio, F., Presutti, V., Nuzzolese, A.G., Recupero, D.R.: A machine reader for the semantic web. In: International Semantic Web Conference (Posters & Demos), pp. 149–152 (2013)Google Scholar
  21. 21.
    Hirschman, L., Thompson, H.S.: Chapter 13: Overview of Evaluation in Speech and Natural Language Processing. In: Survey of the State of the Art in Human Language Technology, pp. 385–420 (1995)Google Scholar
  22. 22.
    Afreen, H., Bajwa, I.S.: Generating UML Class Models from SBVR Software Requirements Specifications. In: 23rd Benelux Conference on Artificial Intelligence (BNAIC 2011), Gent, Belgium, pp. 23–32 (2011)Google Scholar
  23. 23.
    Bajwa, I., Lee, M., Bordbar, B.: SBVR Business Rules Generation from Natural Language Specification. In: AAAI 2011 Spring Symposium AI for Business Agility, San Francisco, USA, pp. 2–8 (2011)Google Scholar
  24. 24.
    Martínez-Fernández, J.L., González, J.C., Villena, J., Martínez, P.: A preliminary approach to the automatic extraction of business rules from unrestricted text in the banking industry. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 299–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Chaparro, O., Aponte, J., Ortega, F., Marcus, A.: Towards the Automatic Extraction of Structural Business Rules from Legacy Databases. In: 2012 19th Working Conference on Reverse Engineering (WCRE), pp. 479–488 (October 2012)Google Scholar
  26. 26.
    Elisa, K., Mark, H.L.: Mapping SBVR to OWL2. Technical report, IBM Research Division, New York, NY (2013)Google Scholar
  27. 27.
    Reynares, E., Caliusco, M.A., Galli, M.R.: Automatable Approach for SBVR to OWL2 Mappings. In: XVI Ibero-American Conference on Software Engineering (CIbSE 2013), Montevideo, Uruguay (2013)Google Scholar
  28. 28.
    Karpovic, J., Nemuraite, L.: Transforming SBVR Business Semantics into Web Ontology Language OWL2: Main Concepts. In: In Proc. 17th International Conference on Information and Software Technologies, IT 2011, pp. 231–254 (2011)Google Scholar
  29. 29.
    Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 162–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Gordon, T.F.: The Legal Knowledge Interchange Format (LKIF). Technical report, European project for Standardized Transparent Representations in order to Extend LegaL Accessibility Specific Targeted Research or Innovation Project (2008)Google Scholar
  31. 31.
    Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.: LegalRuleML: XML-Based Rules and Norms. In: Palmirani, M. (ed.) RuleML 2011 - America. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011)Google Scholar
  32. 32.
    Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: OASIS LegalRuleML. In: Proceedings of 14th International Conference on Artificial Intelligence and Law (ICAIL 2013). ACM (2013)Google Scholar
  33. 33.
    Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0: Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Paschke, A.: Reaction RuleML 1.0 for Rules, Events and Actions in Semantic Complex Event Processing. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 1–21. Springer, Heidelberg (2014)Google Scholar
  35. 35.
    Kozlenkov, A., Paschke, A.: Prova Rule Language Version 3.0 User’s Guide (2010), http://prova.ws/index.html
  36. 36.
    Paschke, A.: Rules and logic programming for the web. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 326–381. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Paschke, A., Boley, H.: Rule Responder: Rule-Based Agents for the Semantic-Pragmatic Web. International Journal on Artificial Intelligence Tools 20(6), 1043–1081 (2011)CrossRefGoogle Scholar
  38. 38.
    Paschke, A.: Rule based service level agreements: RBSLA; knowledge representation for automated e-contract, SLA and policy management. Idea Verlag GmbH (2007)Google Scholar
  39. 39.
    Paschke, A.: A Typed Hybrid Description Logic Programming Language with Polymorphic Order-Sorted DL-Typed Unification for Semantic Web Type Systems. In: Proceedings of the OWLED 2006 Workshop on OWL: Experiences and Directions, Athens, Georgia, USA, November 10-11. CEUR Workshop Proceedings, vol. 216, CEUR-WS.org (2006)Google Scholar
  40. 40.
    Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: 3rd OWL Experiences and Directions Workshop, OWLED 2007 (2007)Google Scholar
  41. 41.
    Paschke, A., Ramakrishna, S.: Legal RuleML Tutorial Use Case - LegalRuleML for Legal Reasoning in Patent Law (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shashishekar Ramakrishna
    • 1
  • Adrian Paschke
    • 1
  1. 1.Department of Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations