Advertisement

The Deformation Complex is a Homotopy Invariant of a Homotopy Algebra

  • Vasily Dolgushev
  • Thomas Willwacher
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 38)

Abstract

To a homotopy algebra one may associate its deformation complex, which is naturally a differential graded Lie algebra. We show that -quasi-isomorphic homotopy algebras have L -quasiisomorphic deformation complexes by an explicit construction.

Key words

Algebraic operads Homotopy algebras 

Mathematics Subject Classification (2010):

18D50. 

Notes

Acknowledgement

We would like to thank Bruno Vallette for useful discussions.

References

  1. 1.
    A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8, 179 (1976) ix+94 pp.Google Scholar
  2. 2.
    N. O’Brian, Geometry of twisting cochains, Compositio Math. 63, 1 (1987) 41–62.MathSciNetzbMATHGoogle Scholar
  3. 3.
    N. O’Brian, D. Toledo, and Y. L. Tong, Hierzebruch-Riemann-Roch for coherent sheaves, Amer. J. Math. 103, 2 (1981) 253–271.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Bressler, A. Gorokhovsky, R. Nest and B. Tsygan, Chern character for twisted complexes, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhäuser, Basel, 2008, pp. 309–324.Google Scholar
  5. 5.
    V.A. Dolgushev and C.L. Rogers, Notes on algebraic operads, graph complexes, and Willwacher’s construction, Mathematical aspects of quantization, 25–145, Contemp. Math., 583, AMS., Providence, RI, 2012; arXiv:1202.2937.Google Scholar
  6. 6.
    V.A. Dolgushev, C. L. Rogers, and T.H. Willwacher, Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields, arXiv:1211.4230.Google Scholar
  7. 7.
    V.A. Dolgushev and T. H. Willwacher, Operadic Twisting – with an application to Deligne’s conjecture, arXiv:1207.2180.Google Scholar
  8. 8.
    H. Gillet, K-theory of twisted complexes, Contemporary Mathematics, 55, 1 (1986) 159–191.MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Keller, Hochschild cohomology and derived Picard groups, Journal of Pure and Applied Algebra, 190 (2004) 177–196.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften 346, Springer, Heidelberg, 2012. xxiv+634 pp.Google Scholar
  11. 11.
    S. Merkulov and B. Vallette, Deformation theory of representations of prop(erad)s. I and II, J. Reine Angew. Math. 634, 636 (2009) 51–106, 123–174.Google Scholar
  12. 12.
    M. Van den Bergh, On global deformation quantization in the algebraic case, J. Algebra 315, 1 (2007), 326–395.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA
  2. 2.Department of MathematicsETH ZürichZürichSwitzerland

Personalised recommendations