On the Complexity of Two-Agent Justification Logic

  • Antonis Achilleos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8624)

Abstract

Justification Logic provides a refined version of epistemic modal logic in which the proofs/justifications are taken into account. As a practical tool, Justification Logic has the ability to model argumentation and track evidence in the full logic context, to measure the complexity of the arguments, to keep the logical omniscience at bay, etc. The complexity of single-agent justification logics has been well-studied and shown to be generally lower than the complexity of their modal counterparts. In this paper we investigate the complexity of two-agent Justification Logic. We show that for most cases the upper complexity bounds established for the single-agent cases are maintained: these logics’ derivability problem is in the second step of the polynomial hierarchy. For certain logics, though, we discover a complexity jump to PSPACE-completeness, which is a new phenomenon for Justification Logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achilleos, A.: A complexity question in justification logic. Journal of Computer and System Sciences 80(6), 1038–1045 (2014)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Achilleos, A.: Modal logics with hard diamond-free fragments. CoRR, abs/1401.5846 (2014)Google Scholar
  3. 3.
    Achilleos, A.: On the complexity of two-agent justification logic. Technical Report TR–2014003, CUNY Ph.D. Program in Computer Science (January 2014)Google Scholar
  4. 4.
    Artemov, S.: Operational modal logic. Technical Report MSI 95–29, Cornell University (December 1995)Google Scholar
  5. 5.
    Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Artemov, S.: Justification logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 1–4. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Artemov, S.: The logic of justification. The Review of Symbolic Logic 1(4), 477–513 (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Artemov, S., Kuznets, R.: Logical omniscience as a computational complexity problem. In: Heifetz, A. (ed.) TARK, pp. 14–23 (2009)Google Scholar
  9. 9.
    Brezhnev, V.N.: On explicit counterparts of modal logics. Technical Report CFIS 2000–05, Cornell University (2000)Google Scholar
  10. 10.
    Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Journal of Applied Non-Classical Logics 21(1), 35–60 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Demri, S.: Complexity of simple dependent bimodal logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 190–204. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Krupski, N.V.: On the complexity of the reflected logic of proofs. Theoretical Computer Science 357(1-3), 136–142 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg (2000), Errata concerning the explicit counterparts of \(\mathcal{D}\) and \(\mathcal{D}4\) are published as [17]Google Scholar
  16. 16.
    Kuznets, R.: Complexity Issues in Justification Logic. PhD thesis, CUNY Graduate Center (May 2008)Google Scholar
  17. 17.
    Kuznets, R.: Complexity through tableaux in justification logic. In: Plenary Talks, Tutorials, Special Sessions, Contributed Talks of Logic Colloquium (LC 2008), Bern, Switzerland, pp. 38–39 (2008)Google Scholar
  18. 18.
    Kuznets, R.: Self-referentiality of justified knowledge. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 228–239. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Panhellenic Logic Symposium, Athens, Greece. University of Athens (2005)Google Scholar
  22. 22.
    Renne, B.: Simple evidence elimination in justification logic. In: Girard, P., Roy, O., Marion, M. (eds.) Dynamic Formal Epistemology. Synthese Library, vol. 351, ch. 7, pp. 127–149. Springer (2011)Google Scholar
  23. 23.
    Spaan, E.: Complexity of modal logics. PhD thesis, University of Amsterdam (1993)Google Scholar
  24. 24.
    Yavorskaya (Sidon), T.: Interacting explicit evidence systems. Theory Comput. Syst. 43(2), 272–293 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonis Achilleos
    • 1
  1. 1.The Graduate Center of CUNYNew YorkUSA

Personalised recommendations