Advertisement

A Bit of History Related to Logic Based on Equality

  • Peter B. Andrews
Part of the Studies in Universal Logic book series (SUL)

Abstract

This historical note illuminates how Leon Henkin’s work influenced that of the author. It focuses on Henkin’s development of a formulation of type theory based on equality, and the significance of this contribution.

Keywords

Type theory Equality Henkin Axiom Extensionality 

References

  1. 1.
    Andrews, P.B.: A reduction of the axioms for the theory of propositional types. Fundam. Math. 52, 345–350 (1963) zbMATHGoogle Scholar
  2. 2.
    Andrews, P.B.: Transfinite Type Theory with Type Variables. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1965) zbMATHGoogle Scholar
  3. 3.
    Andrews, P.B.: General models and extensionality. J. Symb. Log. 37, 395–397 (1972). Reprinted in [7] CrossRefzbMATHGoogle Scholar
  4. 4.
    Andrews, P.B.: General models, descriptions, and choice in type theory. J. Symb. Log. 37, 385–394 (1972). Reprinted in [7] CrossRefzbMATHGoogle Scholar
  5. 5.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic, Dordrecht (2002). Now published by Springer CrossRefGoogle Scholar
  6. 6.
    Andrews, P.B.: Some historical reflections. In: [7], pp. 3–34 Google Scholar
  7. 7.
    Benzmüller, Ch., Brown, Ch.E., Siekmann, J., Statman, R.: Reasoning in Simple Type Theory. Festschrift in Honour of Peter B. Andrews on His 70th Birthday. College Publications, King’s College, London (2008). Available via http://www.collegepublications.co.uk/logic/mlf/?00010 Google Scholar
  8. 8.
    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940). Reprinted in [7] MathSciNetCrossRefGoogle Scholar
  9. 9.
    Burton Dreben, B., Andrews, P., Aanderaa, S.: False lemmas in Herbrand. Bull. Am. Math. Soc. 69, 699–706 (1963) CrossRefzbMATHGoogle Scholar
  10. 10.
    Henkin, L.: The completeness of the first-order functional calculus. J. Symb. Log. 14, 159–166 (1949). Reprinted in [14] MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15, 81–91 (1950). Reprinted in [14] and in [7] MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Henkin, L.: A theory of propositional types. Fundam. Math. 52, 323–344 (1963). Errata Ibid., 53, 119 (1964) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Henkin, L.: Identity as a logical primitive. Philosophia. Philos. Q. Isr. 5(1–2), 31–45 (1975) Google Scholar
  14. 14.
    Hintikka, J. (ed.): The Philosophy of Mathematics. Oxford University Press, Oxford (1969) zbMATHGoogle Scholar
  15. 15.
    Quine, W.V.: Logic based on inclusion and abstraction. J. Symb. Log. 2, 145–152 (1937) CrossRefGoogle Scholar
  16. 16.
    Quine, W.V.: Unification of universes in set theory. J. Symb. Log. 21, 267–279 (1956) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Quine, W.V.: Unification of universes in set theory (abstract). J. Symb. Log. 21, 216 (1956) CrossRefGoogle Scholar
  18. 18.
    Ramsey, F.P.: The foundations of mathematics. In: Proceedings of the London Mathematical Society, Series 2, vol. 25, pp. 338–384 (1926). Reprinted in [19] Google Scholar
  19. 19.
    Ramsey, F.P.: The Foundations of Mathematics and Other Logical Essays. Routledge, London (1931). Reprinted 2001 zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations