The Henkin Sentence

Part of the Studies in Universal Logic book series (SUL)

Abstract

In this paper we discuss Henkin’s question concerning a formula that has been described as expressing its own provability. We analyze Henkin’s formulation of the question and the early responses by Kreisel and Löb and sketch how this discussion led to the development of provability logic. We argue that, in addition to that, the question has philosophical aspects that are still interesting.

Keywords

Self-reference Fixed Points Second Incompleteness Theorem Provability Logic 

Notes

Acknowledgements

We thank Volodya Shavrukov for his comments on the penultimate version.

References

  1. 1.
    Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn. vol. 13, pp. 229–403. Springer, Dordrecht (2004) Google Scholar
  2. 2.
    Areces, C., de Jongh, D., Hoogland, E.: The interpolation theorem for IL and ILP. In: Proceedings of AiML98. Advances in Modal Logic, Uppsala, Sweden (1998) Google Scholar
  3. 3.
    Alberucci, L., Facchini, A.: On modal μ-calculus and Gödel–Löb logic. Stud. Log. 91(2), 145–169 (2009) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Artemov, S.: Logic of proofs. Ann. Pure Appl. Log. 67(1), 29–59 (1994) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beeson, M.: The nonderivability in intuitionistic formal systems of theorems on the continuity of effective operations. J. Symb. Log. 40, 321–346 (1975) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beklemishev, L.D.: Proof-theoretic analysis by iterated reflection. Archive 42, 515–552 (2003). doi:10.1007/s00153-002-0158-7 MathSciNetMATHGoogle Scholar
  7. 7.
    Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals. Ann. Pure Appl. Log. 128, 103–124 (2004) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Beklemishev, L.D.: Reflection principles and provability algebras in formal arithmetic. Russ. Math. Surv. 60(2), 197–268 (2005) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Beklemishev, L.D.: The Worm principle. Logic Colloquium’02. Lect. Notes Log. 27, 75–95 (2006) MathSciNetGoogle Scholar
  10. 10.
    Bernardi, C.: The uniqueness of the fixed-point in every diagonalizable algebra. Stud. Log. 35(4), 335–343 (1976) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Beklemishev, L.D., Joosten, J.J., Vervoort, M.: A finitary treatment of the closed fragment of Japaridze’s provability logic. J. Log. Comput. 15(4), 447–463 (2005) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993) MATHGoogle Scholar
  13. 13.
    Boolos, G., Sambin, G.: Provability: the emergence of a mathematical modality. Stud. Log. 50, 1–23 (1991) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Beklemishev, L.D., Visser, A.: Problems in the logic of provability. In: Gabbay, D.M., Concharov, S.S., Zakharyashev, M. (eds.) Mathematical Problems from Applied Logic I. Logics for the XXIst Century. International Mathematical Series, vol. 4, pp. 77–136. Springer, New York (2006) CrossRefGoogle Scholar
  15. 15.
    Church, A.: A formulation of the logic of sense and denotation. In: Structure, Method, and Meaning, pp. 3–24 (1951) Google Scholar
  16. 16.
    de Jongh, D.H.J., Visser, A.: Explicit fixed points in interpretability logic. Stud. Log. 50, 39–50 (1991) CrossRefMATHGoogle Scholar
  17. 17.
    Feferman, S.: Arithmetization of metamathematics in a general setting. Fundam. Math. 49, 35–92 (1960) MathSciNetMATHGoogle Scholar
  18. 18.
    Gleit, Z., Goldfarb, W.: Characters and fixed points in provability logic. Notre Dame J. Form. Log. 31, 26–36 (1990) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte Math. 38, 173–198 (1931) CrossRefGoogle Scholar
  20. 20.
    Gödel, K.: Ein Interpretation des intuitionistischen Aussagenkalküls. In: Ergebnisse eines mathematischen Kolloquiums, vol. 4, pp. 39–40 (1933). Reprinted as: An interpretation of the intuitionistic propositional calculus. In: Feferman, S. (ed.), Gödel Collected Works I, pp. 300–303, Oxford (1986) Google Scholar
  21. 21.
    Goryachev, S.: On interpretability of some extensions of arithmetic. Mat. Zametki 40, 561–572 (1986) (in Russian). English translation in Math. Notes 40 MathSciNetGoogle Scholar
  22. 22.
    Guaspari, D., Solovay, R.M.: Rosser sentences. Ann. Math. Log. 16, 81–99 (1979) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik II, Springer, Berlin (1939). 2nd edn. in (1970) MATHGoogle Scholar
  24. 24.
    Henkin, L.: A problem concerning provability. J. Symb. Log. 17, 160 (1952) CrossRefGoogle Scholar
  25. 25.
    Henkin, L.: Review of G. Kreisel: On a problem of Henkin’s. J. Symb. Log. 19(3), 219–220 (1954) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hoogland, E.: Definability and Interpolation: Model-Theoretic Investigations. Institute for Logic, Language and Computation, Amsterdam (2001) Google Scholar
  27. 27.
    Halbach, V., Visser, A.: Self-reference in Arithmetic. Logic Group Preprint Series, vol. 316. Faculty of Humanities, Philosophy, Utrecht (2013) Google Scholar
  28. 28.
    Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. J. Symb. Log. 66(1), 281–294 (2001) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Japaridze, G.: The polymodal logic of provability. In: Intensional Logics and Logical Structure of Theories: Material from the Fourth Soviet–Finnish Symposium on Logic, Telavi, pp. 16–48 (1985) Google Scholar
  30. 30.
    Japaridze, G., de Jongh, D.: The logic of provability. In: Handbook of Proof Theory, pp. 475–546. North-Holland, Amsterdam (1998) CrossRefGoogle Scholar
  31. 31.
    Kreisel, G.: On a problem of Henkin’s. Indag. Math. 15, 405–406 (1953) MathSciNetGoogle Scholar
  32. 32.
    Kreisel, G., Takeuti, G.: Formally self-referential propositions for cut free classical analysis and related systems. Diss. Math. 118, 1–50 (1974) MathSciNetGoogle Scholar
  33. 33.
    Lenzi, G.: Recent results on the modal μ-calculus: a survey. Rend. Ist. Mat. Univ. Trieste 42, 235–255 (2010) MathSciNetMATHGoogle Scholar
  34. 34.
    Lindström, P.: Provability logic—a short introduction. Theoria 62(1–2), 19–61 (1996) MathSciNetMATHGoogle Scholar
  35. 35.
    Löb, M.H.: Solution of a problem of Leon Henkin. J. Symb. Log. 20, 115–118 (1955) CrossRefMATHGoogle Scholar
  36. 36.
    Maksimova, L.: Definability theorems in normal extensions of the probability logic. Stud. Log. 48(4), 495–507 (1989) MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Raatikainen, P.: Gödel’s incompleteness theorems. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2013). Available via http://plato.stanford.edu/archives/win2013/entries/goedel-incompleteness/ Google Scholar
  38. 38.
    Reidhaar-Olson, L.: A new proof of the fixed-point theorem of provability logic. Notre Dame J. Form. Log. 31(1), 37–43 (1990) MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Sambin, G.: An effective fixed-point theorem in intuitionistic diagonalizable algebras. Stud. Log. 35, 345–361 (1976) MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Shavrukov, V.Yu.: A smart child of Peano’s. Notre Dame J. Form. Log. 35, 161–185 (1994) MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Smoryński, C.: Beth’s theorem and self-referential sentences. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77. Studies in Logic. North-Holland, Amsterdam (1978) Google Scholar
  42. 42.
    Smoryński, C.: Self-reference and Modal Logic. Springer, New York (1985) CrossRefMATHGoogle Scholar
  43. 43.
    Smoryński, C.: Arithmetic analogues of McAloon’s unique Rosser sentences. Arch. Math. Log. 28, 1–21 (1989) CrossRefMATHGoogle Scholar
  44. 44.
    Smoryński, C.: The development of self-reference: Löb’s theorem. In: Drucker, T. (ed.) Perspectives on the History of Mathematical Logic, pp. 110–133. Springer, Berlin (1991) Google Scholar
  45. 45.
    Solovay, R.M.: Provability interpretations of modal logic. Isr. J. Math. 25, 287–304 (1976) MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Sambin, G., Valentini, S.: The modal logic of provability. The sequential approach. J. Philos. Log. 11(3), 311–342 (1982) MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Švejdar, V.: On provability logic. Nord. J. Philos. Log. 4(2), 95–116 (2000) MATHGoogle Scholar
  48. 48.
    Van Benthem, J.: Modal frame correspondences and fixed-points. Stud. Log. 83(1–3), 133–155 (2006) CrossRefMATHGoogle Scholar
  49. 49.
    Visser, A.: On the completeness principle. Ann. Math. Log. 22, 263–295 (1982) MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Visser, A.: Peano’s smart children: a provability logical study of systems with built-in consistency. Notre Dame J. Form. Log. 30(2), 161–196 (1989) MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Visser, A.: Faith & Falsity: a study of faithful interpretations and false \({\Sigma}^{0}_{1}\)-sentences. Ann. Pure Appl. Log. 131(1–3), 103–131 (2005) MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Visser, A.: Löb’s logic meets the μ-calculus. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles, Steps on the Road to Infinity. Essays Dedicated to Jan Willem Klop on the Occasion of His 60th Birthday. LNCS, vol. 3838, pp. 14–25. Springer, Berlin (2005) CrossRefGoogle Scholar
  53. 53.
    Wells, R.: Review of: A formulation of the logic of sense and denotation, by Alonzo Church. J. Symb. Log. 17(2), 133–134 (1952) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.New CollegeOxfordUK
  2. 2.Philosophy, Faculty of HumanitiesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations