Cycles and Global Attractors of Reaction Systems

  • Enrico Formenti
  • Luca Manzoni
  • Antonio E. Porreca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8614)

Abstract

Reaction systems are a recent formal model inspired by the chemical reactions that happen inside cells and possess many different dynamical behaviours. In this work we continue a recent investigation of the complexity of detecting some interesting dynamical behaviours in reaction system. We prove that detecting global behaviours such as the presence of global attractors is PSPACE - complete. Deciding the presence of cycles in the dynamics and many other related problems are also PSPACE - complete. Deciding bijectivity is, on the other hand, a coNP - complete problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical systems. Int. J. Found. Comput. Sci. 72(8), 1317–1345 (2006)MATHMathSciNetGoogle Scholar
  2. 2.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In: Kelemen, J., Kelemenová, A. (eds.) Pǎun Festschrif. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Corolli, L., Maj, C., Marini, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: From computer science to biology. Theor. Comp. Sci. 454, 95–108 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ehrenfeucht, A., Main, M., Rozenberg, G.: Combinatorics of life and death for reaction systems. Int. J. Found. Comput. Sci. 21(03), 345–356 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ehrenfeucht, A., Main, M., Rozenberg, G.: Functions defined by reaction systems. Int. J. Found. Comput. Sci. 22(1), 167–168 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75, 263–280 (2007)MATHMathSciNetGoogle Scholar
  7. 7.
    Formenti, E., Manzoni, L., Porreca, A.E.: Fixed points and attractors of reaction systems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 194–203. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)Google Scholar
  9. 9.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer (1999)Google Scholar
  10. 10.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)CrossRefGoogle Scholar
  11. 11.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)Google Scholar
  12. 12.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Salomaa, A.: Functions and sequences generated by reaction systems. Theoretical Computer Science 466, 87–96 (2012)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Salomaa, A.: Functional constructions between reaction systems and propositional logic. Int. J. Found. Comput. Sci. 24(1), 147–159 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Salomaa, A.: Minimal and almost minimal reaction systems. Natural Computing 12(3), 369–376 (2013)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Shmulevich, I., Dougherty, E.R.: Probabilistic boolean networks: the modeling and control of gene regulatory networks. SIAM (2010)Google Scholar
  17. 17.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7, 615–633 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Enrico Formenti
    • 1
  • Luca Manzoni
    • 1
  • Antonio E. Porreca
    • 2
  1. 1.Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271Sophia AntipolisFrance
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations