Deterministic Set Automata

  • Martin Kutrib
  • Andreas Malcher
  • Matthias Wendlandt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8633)


We consider the model of deterministic set automata which are basically deterministic finite automata equipped with a set as an additional storage medium. The basic operations on the set are the insertion of elements, the removing of elements, and the test whether an element is in the set. We investigate the computational power of deterministic set automata and compare the language class accepted with the context-free languages and classes of languages accepted by queue automata. As results the incomparability to all classes considered is obtained. In the second part of the paper, we examine the closure properties of the class of DSA languages under Boolean operations. Finally, we show that deterministic set automata may be an interesting model from a practical point of view by proving that their emptiness problem is decidable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cherubini, A., Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: QRT FIFO automata, breadth-first grammars and their relations. Theoret. Comput. Sci. 85, 171–203 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chomsky, N.: On certain formal properties of grammars. Inform. Control 2, 137–167 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Daley, M., Eramian, M.G., McQuillan, I.: The bag automaton: A model of nondeterministic storage. J. Autom., Lang. Comb. 13, 185–206 (2008)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14, 389–418 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Holzer, M., Kutrib, M.: Flip-pushdown automata: k + 1 pushdown reversals are better than k. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 490–501. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)Google Scholar
  7. 7.
    Kutrib, M., Malcher, A., Mereghetti, C., Palano, B., Wendlandt, M.: Input-driven queue automata: Finite turns, decidability, and closure properties. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 232–243. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Lange, K.-J., Reinhardt, K.: Automaten mit der Datenstruktur Menge. In: Kutrib, M., Worsch, T. (eds.) 5. Theorietag Automaten und Formale Sprachen, pp. 159–167. Universität Giessen, Giessen (1995)Google Scholar
  9. 9.
    Ogden, W.F.: Intercalation theorems for stack languages. In: Proceedings of the First Annual ACM Symposium on Theory of Computing (STOC 1969), pp. 31–42. ACM Press, New York (1969)CrossRefGoogle Scholar
  10. 10.
    Sénizergues, G.: L(A) = L(B)? decidability results from complete formal systems. Theoret. Comput. Sci. 251, 1–166 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Kutrib
    • 1
  • Andreas Malcher
    • 1
  • Matthias Wendlandt
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations