Advertisement

Closure Properties of Pattern Languages

  • Joel D. Day
  • Daniel Reidenbach
  • Markus L. Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8633)

Abstract

Pattern languages are a well-established class of languages that is particularly popular in algorithmic learning theory, but very little is known about their closure properties. In the present paper we establish a large number of closure properties of the terminal-free pattern languages, and we characterise when the union of two terminal-free pattern languages is again a terminal-free pattern language. We demonstrate that the equivalent question for general pattern languages is characterised differently, and that it is linked to some of the most prominent open problems for pattern languages. We also provide fundamental insights into a well-known construction of E-pattern languages as unions of NE-pattern languages, and vice versa.

Keywords

Pattern languages Closure properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bayer, H.: Allgemeine Eigenschaften von Patternsprachen. Projektarbeit, Fachbereich Informatik, Universität Kaiserslautern (2007) (in German)Google Scholar
  3. 3.
    Fernau, H., Schmid, M.L.: Pattern matching with variables: A multivariate complexity analysis. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 83–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. In: Proc. 33rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013. Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 55–66 (2013)Google Scholar
  5. 5.
    Freydenberger, D., Reidenbach, D.: Bad news on decision problems for patterns. Information and Computation 208, 83–96 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Jain, S., Ong, Y., Stephan, F.: Regular patterns, regular languages and context-free languages. Information Processing Letters 110, 1114–1119 (2010)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. International Journal of Computer Mathematics 50, 147–163 (1994)CrossRefMATHGoogle Scholar
  8. 8.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal of Computer and System Sciences 50, 53–63 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lange, S., Wiehagen, R.: Polynomial-time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theoretical Computer Science 350, 91–102 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Reidenbach, D.: An examination of Ohlebusch and Ukkonen’s conjecture on the equivalence problem for E-pattern languages. Journal of Automata, Languages and Combinatorics 12, 407–426 (2007)MATHMathSciNetGoogle Scholar
  12. 12.
    Reidenbach, D.: Discontinuities in pattern inference. Theoretical Computer Science 397, 166–193 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Information and Computation (to appear)Google Scholar
  14. 14.
    Reidenbach, D., Schmid, M.L.: Regular and context-free pattern languages over small alphabets. Theoretical Computer Science 518, 80–95 (2014)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Shinohara, T.: Inferring unions of two pattern languages. Bulletin of Informatics and Cybernetics 20, 83–88 (1983)MATHMathSciNetGoogle Scholar
  16. 16.
    Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pattern languages from positive data. Theoretical Computer Science 241, 191–209 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Wright, K.: Identification of unions of languages drawn from an identifiable class. In: Proc. 2nd Annual Workshop on Computational Learning Theory, COLT 1989, pp. 328–333 (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joel D. Day
    • 1
  • Daniel Reidenbach
    • 1
  • Markus L. Schmid
    • 2
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughUK
  2. 2.FB IV–Abteilung InformatikwissenschaftenUniversität TrierTrierGermany

Personalised recommendations