Advertisement

k-Abelian Pattern Matching

  • Thorsten Ehlers
  • Florin Manea
  • Robert Mercaş
  • Dirk Nowotka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8633)

Abstract

Two words are called k-abelian equivalent, if they share the same multiplicities for all factors of length at most k. We present an optimal linear time algorithm for identifying all occurrences of factors in a text that are k-abelian equivalent to some pattern P. Moreover, an optimal algorithm for finding the largest k for which two words are k-abelian equivalent is given. Solutions for various online versions of the k-abelian pattern matching problem are also proposed.

Keywords

Linear Time Pattern Match Online Algorithm Query Time Vibrio Cholera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and finite automata. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Rainbow of Computer Science. LNCS, vol. 6570, pp. 90–101. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Huova, M., Karhumäki, J., Saarela, A.: Problems in between words and abelian words: k-abelian avoidability. Theor. Comput. Sci. 454, 172–177 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mercaş, R., Saarela, A.: 3-abelian cubes are avoidable on binary alphabets. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 374–383. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Rao, M.: On some generalizations of abelian power avoidability (2013) (preprint)Google Scholar
  5. 5.
    Karhumäki, J., Puzynina, S., Saarela, A.: Fine and Wilf’s theorem for k-abelian periods. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 296–307. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of abelian equivalence and complexity of infinite words. J. Combin. Theory Ser. A 120(8), 2189–2206 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gusfield, D.: Algorithms on strings, trees, and sequences: Computer science and computational biology. Cambridge University Press, New York (1997)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. Journal of the ACM 53, 918–936 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cummings, L.J., Smyth, W.F.: Weak repetitions in strings. J. Combin. Math. Combin. Comput. 24, 33–48 (1997)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ružić, M.: Constructing efficient dictionaries in close to sorting time. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 84–95. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: SFCS 16, pp. 75–84. IEEE Computer Society (1975)Google Scholar
  12. 12.
    Breslauer, D., Grossi, R., Mignosi, F.: Simple real-time constant-space string matching. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 173–183. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Maaß, M.G.: Computing suffix links for suffix trees and arrays. Inf. Process. Lett. 101(6), 250–254 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted level ancestors in suffix trees (peprint, 2014)Google Scholar
  15. 15.
    Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern matching on trees and tree-like structures. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 517–528. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thorsten Ehlers
    • 1
  • Florin Manea
    • 1
  • Robert Mercaş
    • 1
  • Dirk Nowotka
    • 1
  1. 1.Department of Computer ScienceKiel UniversityKielGermany

Personalised recommendations