Advertisement

The Deaths of Very Massive Stars

  • Stan. E. WoosleyEmail author
  • Alexander Heger
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 412)

Abstract

The theory underlying the evolution and death of stars heavier than 10 M on the main sequence is reviewed with an emphasis upon stars much heavier than 30 M. These are stars that, in the absence of substantial mass loss, are expected to either produce black holes when they die, or, for helium cores heavier than about 35 M, encounter the pair instability. A wide variety of outcomes is possible depending upon the initial composition of the star, its rotation rate, and the physics used to model its evolution. These stars can produce some of the brightest supernovae in the universe, but also some of the faintest. They can make gamma-ray bursts or collapse without a whimper. Their nucleosynthesis can range from just CNO to a broad range of elements up to the iron group. Though rare nowadays, they probably played a disproportionate role in shaping the evolution of the universe following the formation of its first stars.

Keywords

Black Hole Neutron Star Light Curve Massive Star Main Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Tuguldur Sukhbold and Ken Chen for permission to include here details of their unpublished work, especially Figs. 7.17.6, and 7.8. This work has been supported by the National Science Foundation (AST 0909129), the NASA Theory Program (NNX09AK36G), and the University of California Lab Fees Research Program (12-LR-237070).

References

  1. Abel, T., Bryan, G. L., & Norman, M. L. (2002). Science, 295, 93.CrossRefADSGoogle Scholar
  2. Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. (2003). Astrophysical Journal, 584, 954.CrossRefADSGoogle Scholar
  3. Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. (2007). Astrophysical Journal, 664, 416.CrossRefADSGoogle Scholar
  4. Brown, J. M., & Woosley, S. E. (2013). Astrophysical Journal, 769, 99.CrossRefADSGoogle Scholar
  5. Chandrasekhar, S. (1939). An introduction to the study of stellar structure. Chicago: The University of Chicago press.Google Scholar
  6. Chevalier, R. A., & Soderberg, A. M. (2010). Astrophysical Journal Letters, 711, L40.CrossRefADSGoogle Scholar
  7. Chieffi, A., & Limongi, M. (2004). Astrophysical Journal, 608, 405.CrossRefADSGoogle Scholar
  8. Chieffi, A., & Limongi, M. (2013). Astrophysical Journal, 764, 21.CrossRefADSGoogle Scholar
  9. Chatzopoulos, E., & Wheeler, J. C. (2012). Astrophysical Journal, 748, 42.CrossRefADSGoogle Scholar
  10. Dessart, L., Hillier, D. J., & Livne, E., et al. (2011). Monthly Notices of the Royal Astronomical Society, 414, 2985.CrossRefADSGoogle Scholar
  11. Dessart, L., Hillier, D. J., Li, C., & Woosley, S. (2012). Monthly Notices of the Royal Astronomical Society, 424, 2139.CrossRefADSGoogle Scholar
  12. Duncan, R. C., & Thompson, C. (1992). Astrophysical Journal Letters, 392, L9.CrossRefADSGoogle Scholar
  13. Fowler, W. A., & Hoyle, F. (1964). Astrophysical Journal Supplement, 9, 201.CrossRefADSGoogle Scholar
  14. Fuller, G. M., Woosley, S. E., & Weaver, T. A. (1986). Astrophysical Journal, 307, 675.CrossRefADSGoogle Scholar
  15. Gal-Yam, A., Mazzali, P., & Ofek, E. O., et al., (2009). Nature, 462, 624.CrossRefADSGoogle Scholar
  16. Heger, A., & Woosley, S. E., (2002). Astrophysical Journal, 567, 532.CrossRefADSGoogle Scholar
  17. Heger, A., Woosley, S. E., & Spruit, H. C. (2005). Astrophysical Journal, 626, 350.CrossRefADSGoogle Scholar
  18. Heger, A., & Woosley, S. E. (2010). Astrophysical Journal, 724, 341.CrossRefADSGoogle Scholar
  19. Hirschi, R., Meynet, G., & Maeder, A. (2005). Astronomy and Astrophysics, 433, 1013.CrossRefADSGoogle Scholar
  20. Hoyle, F., & Fowler, W. A. (1960). Astrophysical Journal, 132, 565.CrossRefADSGoogle Scholar
  21. Janka, H.-T., Hanke, F., Hüdepohl, L., Marek, A., Müller, B., & Obergaulinger, M. (2012). Progress of Theoretical and Experimental Physics, 01A309, 33p.Google Scholar
  22. Janka, H.-T. (2012). Annual Review of Nuclear and Particle Science, 62, 407.CrossRefADSGoogle Scholar
  23. Kasen, D., & Woosley, S. E. (2009). Astrophysical Journal, 703, 2205.CrossRefADSGoogle Scholar
  24. Kasen, D., & Bildsten, L. (2010). Astrophysical Journal, 717, 245.CrossRefADSGoogle Scholar
  25. Lai, D. K., Bolte, M., & Johnson, J. A., et al. (2008). Astrophysical Journal, 681, 1524.CrossRefADSGoogle Scholar
  26. Lang, K. (1980). Astrophysical formulae. Berlin: Springer.CrossRefGoogle Scholar
  27. Lattimer, J. M., & Prakash, M. (2007). Physics Reports, 442, 109.CrossRefADSGoogle Scholar
  28. Limongi, M., Straniero, O., & Chieffi, A. (2000). Astrophysical Journal Supplement, 129, 625.CrossRefADSGoogle Scholar
  29. Lovegrove, E., & Woosley, S. E. (2013). Astrophysical Journal, 769, 109.CrossRefADSGoogle Scholar
  30. Maeda, K., Tanaka, M., & Nomoto, K., et al. (2007). Astrophysical Journal, 666, 1069.CrossRefADSGoogle Scholar
  31. Maeder, A. (1987). Astronomy and Astrophysics, 178, 159.ADSGoogle Scholar
  32. Maeder, A., & Meynet, G. (2012). Reviews of Modern Physics, 84, 25.CrossRefADSGoogle Scholar
  33. Mereghetti, S. (2008). Astronomy and Astrophysics Review, 15, 225.CrossRefADSGoogle Scholar
  34. Meynet, G. (2002). Astrophysics and Space Science, 281, 183.CrossRefADSGoogle Scholar
  35. Müller, B., Janka, H.-T., & Heger, A. (2012). Astrophysical Journal, 761, 72.CrossRefADSGoogle Scholar
  36. Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., & Maeda, K. (2006). Nuclear Physics A, 777, 424.CrossRefADSGoogle Scholar
  37. Nomoto, K., Kobayashi, C., & Tominaga, N. (2013). Annual Review of Astronomy and Astrophysics, 51, 457.CrossRefADSGoogle Scholar
  38. O’Connor, E., & Ott, C. D. (2011). Astrophysical Journal, 730, 70.CrossRefADSGoogle Scholar
  39. Özel, F., Psaltis, D., Narayan, R., & McClintock, J. E. (2010). Astrophysical Journal, 725, 1918.CrossRefADSGoogle Scholar
  40. Piro, A. L. (2013). Astrophysical Journal Letters, 768, L14.CrossRefADSGoogle Scholar
  41. Quataert, E., & Shiode, J. (2012). Monthly Notices of the Royal Astronomical Society, 423, L92–96.CrossRefADSGoogle Scholar
  42. Quataert, E., & Kasen, D. (2012). Monthly Notices of the Royal Astronomical Society, 419, L1.CrossRefADSGoogle Scholar
  43. Rosen, A. L., Krumholz, M. R., & Ramirez-Ruiz, E. (2012). Astrophysical Journal, 748, 97.CrossRefADSGoogle Scholar
  44. Smartt, S. J. (2009). Annual Review of Astronomy and Astrophysics, 47, 63.CrossRefADSGoogle Scholar
  45. Smartt, S. J., Eldridge, J. J., Crockett, R. M., & Maund, J. R. (2009). Monthly Notices of the Royal Astronomical Society, 395, 1409.CrossRefADSGoogle Scholar
  46. Spruit, H. C. (2002). Astronomy and Astrophysics, 381, 923.CrossRefADSGoogle Scholar
  47. Sukhbold, T., & Woosley, S. E. (2014). Astrophysical Journal, 783, 10.CrossRefADSGoogle Scholar
  48. Tan, J. C., & McKee, C. F. (2004). Astrophysical Journal, 603, 383.CrossRefADSGoogle Scholar
  49. Thielemann, F.-K., Nomoto, K., & Hashimoto, M.-A. (1996). Astrophysical Journal, 460, 408.CrossRefADSGoogle Scholar
  50. Timmes, F. X., Woosley, S. E., & Weaver, T. A. (1996). Astrophysical Journal, 457, 834.CrossRefADSGoogle Scholar
  51. Ugliano, M., Janka, H.-T., Marek, A., & Arcones, A. (2012). Astrophysical Journal, 757, 69.CrossRefADSGoogle Scholar
  52. Vink, J. S., & de Koter, A. (2005). Astronomy and Astrophysics, 442, 587.CrossRefADSGoogle Scholar
  53. Vink, J. S., Muijres, L. E., & Anthonisse, B., et al. (2011). Astronomy and Astrophysics, 531, A132.CrossRefADSGoogle Scholar
  54. Vink, J. S., Heger, A., Krumholz, M. R., et al. (2013). To be published in Highlights of Astronomy. arXiv:1302.2021.Google Scholar
  55. Wiktorowicz, G., Belczynski, K., & Maccarone, T. J. (2014, submitted). Astrophysical Journal. arXiv:1312.5924.Google Scholar
  56. Woosley, S. E. (2010). Astrophysical Journal Letters, 719, L204.CrossRefADSGoogle Scholar
  57. Woosley, S. E. (2013). C. Kouveliotou, R. A. M. J. Wijers & S. E. Woosley (Eds.), Gamma-ray Bursts (p. 191). Cambridge: Cambridge University Press.Google Scholar
  58. Woosley, S. E., & Weaver, T. A. (1995). Astrophysical Journal Supplement, 101, 181.CrossRefADSGoogle Scholar
  59. Woosley, S. E., Heger, A., & Weaver, T. A. (2002). Reviews of Modern Physics, 74, 1015.CrossRefADSGoogle Scholar
  60. Woosley, S. E., & Heger, A. (2006). Astrophysical Journal, 637, 914.CrossRefADSGoogle Scholar
  61. Woosley, S. E., Blinnikov, S., & Heger, A. (2007). Nature, 450, 390.CrossRefADSGoogle Scholar
  62. Woosley, S. E., & Heger, A. (2007). Physics Reports, 442, 269.CrossRefADSGoogle Scholar
  63. Woosley, S. E., & Heger, A. (2012). Astrophysical Journal, 752, 32.CrossRefADSGoogle Scholar
  64. Yoon, S.-C., & Langer, N. (2005). Astronomy and Astrophysics, 443, 643.CrossRefADSGoogle Scholar
  65. Yoon, S.-C., & Langer, N. (2006). Astronomy and Astrophysics, 460, 199.CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Astronomy and AstrophysicsUCSCSanta CruzUSA
  2. 2.School of Mathematical SciencesMonash UniversityVictoriaAustralia

Personalised recommendations