A New Existence Condition for Hadamard Matrices with Circulant Core

  • Ilias S. KotsireasEmail author
  • Panos M. Pardalos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8426)


We derive a new existence condition for Hadamard matrices with circulant core, in terms of resultants, Hall polynomials and cyclotomic polynomials. The derivation of this condition is based on a formula for the determinant of a circulant matrix and properties of resultants.


Hadamard matrices Resultants Cyclotomic polynomials 


  1. 1.
    Agaian, S.S.: Hadamard Matrices and their Applications. Lecture Notes in Mathematics, vol. 1168. Springer, Berlin (1985)zbMATHGoogle Scholar
  2. 2.
    Apostol, T.M.: Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc. 24, 457–462 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Djokovic, D.Z.: Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–489 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fee, G., Granville, A.: The prime factors of Wendt’s binomial circulant determinant. Math. Comp. 57(196), 839–848 (1991)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. Sci. Math. 17, 30–31 (1893)Google Scholar
  6. 6.
    Hall, M.: Combinatorial Theory. Wiley Classics Library. Wiley, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Horadam, K.J.: Hadamard Matrices and their Applications. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  8. 8.
    Kotsireas, I.S., Koukouvinos, C., Seberry, J.: Hadamard ideals and Hadamard matrices with circulant core. J. Combin. Math. Combin. Comput. 57, 47–63 (2006)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Lehmer, D.H.: Some properties of circulants. J. Number Theor. 5, 43–54 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lidl, R., Niederreiter, H.: Finite fields. Encyclopedia of Mathematics and its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997). (With a foreword by P. M. Cohn)Google Scholar
  11. 11.
    No, J.-S., et al.: Binary pseudorandom sequences of period \(2^n -1\) with ideal autocorrelation. IEEE Trans. Inform. Theory 44(2), 814–817 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Seberry, J., Wysocki, B., Wysocki, T.: On some applications of Hadamard matrices. Metrika 62, 221–239 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. Wiley, New York (1992)Google Scholar
  14. 14.
    Stern, M.A.: Einige Bemerkungen über eine Determinante. J. Reine Angew. Math. 73, 374–380 (1871)CrossRefzbMATHGoogle Scholar
  15. 15.
    Stinson, D.R.: Combinatorial Designs, Constructions and Analysis. Springer, New York (2004)zbMATHGoogle Scholar
  16. 16.
    van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Wallis, W.D., Street, A.P., Wallis, J.S.: Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices. Lecture Notes in Mathematics, vol. 292. Springer, Heidelberg (1972)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Physics and Computer ScienceWilfrid Laurier UniversityWaterlooCanada
  2. 2.Industrial and Systems Engineering DepartmentCenter for Applied OptimizationGainesvilleUSA

Personalised recommendations