Robust Support Vector Machines with Polyhedral Uncertainty of the Input Data

  • Neng FanEmail author
  • Elham Sadeghi
  • Panos M. Pardalos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8426)


In this paper, we use robust optimization models to formulate the support vector machines (SVMs) with polyhedral uncertainties of the input data points. The formulations in our models are nonlinear and we use Lagrange multipliers to give the first-order optimality conditions and reformulation methods to solve these problems. In addition, we have proposed the models for transductive SVMs with input uncertainties.


Support vector machines Robust optimization Polyhedral uncertainty Nonlinear programming Classification 


  1. 1.
    Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)zbMATHGoogle Scholar
  2. 2.
    Bi, J., Zhang, T.: Support vector classification with input data uncertainty. In: Advances in Neural Information Processing System (NIPS’04), vol. 17, pp. 161–168 (2004)Google Scholar
  3. 3.
    Trafalis, T.B., Gilbert, R.C.: Robust classification and regression using support vector machines. Eur. J. Oper. Res. 173, 893–909 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Trafalis, T.B., Gilbert, R.C.: Robust support vector machines for classification and computational issues. Optim. Meth. Softw. 22(1), 187–198 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ghaoui, L.E., Lanckriet, G.R.G., Natsoulis, G.: Robust Classification with Interval Data, Technical report No. UCB/CSD-03-1279, October 2003Google Scholar
  6. 6.
    Niaf, E., Flamary, R., Lartizien, C., Canu, S.: Handling uncertainties in SVM classification. In: Proceedings of IEEE Workshop on Statistical Signal Processing, Nice, France, pp 757–760 (2011)Google Scholar
  7. 7.
    Bhattachrrya, S., Grate, L., Mian, S., El Ghaoui, L., Jordan, M.: Robust sparse hyperplane classifiers: application to uncertain molecular profiling data. J. Comput. Biol. 11(6), 1073–1089 (2003)CrossRefGoogle Scholar
  8. 8.
    Yang, J.: Classification under input uncertainty with support vector machines. Ph.D. Thesis, University of Southampton (2009)Google Scholar
  9. 9.
    Qi, Z., Tian, Y., Shi, Y.: Robust twin support vector machine for pattern classification. Pattern Recogn. 46(1), 305–316 (2013)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jeyakumar, V., Li, G., Suthaharan, S.: Support vector machine classifiers with uncertain knowledge sets via robust optimization. Optim. A J. Math. Prog. Oper. Res. (2012). doi: 10.1080/02331934.2012.703667
  11. 11.
    Xu, H., Caramanis, C., Mannor, S.: Robustness and regularization of support vector machines. Mach. Learn. Res. Arch. 10, 1485–1510 (2009)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Xanthopoulos, P., Guarracino, M.R., Pardalos, P.M.: Robust generalized eigenvalue classifier with ellipsoidal uncertainty. Ann. Oper. Res. (2013). doi: 10.1007/s10479-012-1303-2
  13. 13.
    Takeda, A., Mitsugi, H., Kanamori, T.: A unified robust classification model. Neural Comput. 25(3), 759–804 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Ben-Tal, A., Bhadra, S., Bhattacharyya, C., Nath, J.S.: Chance constrained uncertain classification via robust optimization. Math. Program. Ser. B 127, 145–173 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and applications. Math. Program. Ser. B 92, 453–480 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. Ser. B 98, 49–71 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Systems and Industrial EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Center for Applied Optimization, Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations