Deconstructing Multi-objective Evolutionary Algorithms: An Iterative Analysis on the Permutation Flow-Shop Problem

  • Leonardo C. T. Bezerra
  • Manuel López-Ibáñez
  • Thomas Stützle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8426)


Many studies in the literature have applied multi-objective evolutionary algorithms (MOEAs) to multi-objective combinatorial optimization problems. Few of them analyze the actual contribution of the basic algorithmic components of MOEAs. These components include the underlying EA structure, the fitness and diversity operators, and their policy for maintaining the population. In this paper, we compare seven MOEAs from the literature on three bi-objective and one tri-objective variants of the permutation flowshop problem. The overall best and worst performing MOEAs are then used for an iterative analysis, where each of the main components of these algorithms is analyzed to determine their contribution to the algorithms’ performance. Results confirm some previous knowledge on MOEAs, but also provide new insights. Concretely, some components only work well when simultaneously used. Furthermore, a new best-performing algorithm was discovered for one of the problem variants by replacing the diversity component of the best performing algorithm (NSGA-II) with the diversity component from PAES.


Pareto Front Nondominated Solution Total Tardiness Evolution Strategy Total Flow Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to the results presented in this paper has received funding from the Meta-X ARC project, the COMEX project within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office, and the FRFC project “Méthodes de recherche hybrides pour la résolution de problèmes complexes”. Leonardo C. T. Bezerra, Manuel López-Ibáñez and Thomas Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which they are a FRIA doctoral fellow, a postdoctoral researcher and a senior research associate, respectively.


  1. 1.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, Ch., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic generation of multi-objective ACO algorithms for the bi-objective knapsack. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 37–48. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Deconstructing multi-objective evolutionary algorithms: An iterative analysis on the permutation flowshop: Supplementary material (2013).
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP\(+\)PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations through ablation. In: Proceedings of MIC 2013, the 10th Metaheuristics International Conference, pp. 123–132 (2013)Google Scholar
  9. 9.
    Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) ICGA, pp. 416–423. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  10. 10.
    Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, p. 13. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  11. 11.
    Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)CrossRefGoogle Scholar
  12. 12.
    Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011)CrossRefMathSciNetGoogle Scholar
  13. 13.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  14. 14.
    López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)CrossRefGoogle Scholar
  15. 15.
    Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) ICGA-85, pp. 93–100. Lawrence Erlbaum Associates, Hillsdale (1985)Google Scholar
  17. 17.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar
  18. 18.
    Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  20. 20.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control. CIMNE, Barcelona, Spain, pp. 95–100 (2002)Google Scholar
  21. 21.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto evolutionary algorithm. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  22. 22.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leonardo C. T. Bezerra
    • 1
  • Manuel López-Ibáñez
    • 1
  • Thomas Stützle
    • 1
  1. 1.IRIDIAUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations