Response to Active Standing of Heart Beat Interval, Systolic Blood Volume and Systolic Blood Pressure: Recurrence Plot Analysis

  • Hortensia González
  • Oscar Infante
  • Claudia Lerma
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 103)

Abstract

Recurrence quantitative analysis (RQA) indexes of beat-to-beat heart-beat interval and systolic blood pressure (SBP) have helped to understand the dynamical response to active standing. The peripheral blood volume is another variable of the cardiovascular control system with a crucial role during active standing since re-distribution of blood volume is necessary to counteract the gravity force and to provide enough blood supply to vital organs. Beat-to-beat photoplethysmographic systolic blood volume (SBV) oscillations may be useful to study the cardiovascular control if it is considered as a regulatory system with relevant local differences compared to blood pressure regulation. There are no previous reports of the SBV dynamical response to active standing. In this work we study simultaneously the dynamical response of heart-beat interval, SBP and SBV to active standing through comparison of RQA indexes evaluated during supine position and during active standing in 19 healthy volunteers. We show that in response to orthostatic stress, SBV oscillations have dynamic changes similar, but not identical, to SBP and the heart-beat interval. This suggests that these three variables are complementary for a better evaluation of the cardiovascular dynamics.

Keywords

Systolic Blood Pressure Heart Rate Variability Chronic Fatigue Syndrome Recurrence Plot Orthostatic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by CONACyT México 169489 grant.

References

  1. 1.
    Armour, J.A.: Cardiac neuronal hierarchy in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287(2), R262–R271 (2004)CrossRefGoogle Scholar
  2. 2.
    Berntson, G.G., Cacioppo, J.T., Quigley, K.S.: Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychol. Bull. 114(2), 296–322 (1993)CrossRefGoogle Scholar
  3. 3.
    Akselrod, S., Gordon, D., Ubel, F.A.: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504), 220–222 (1981)CrossRefGoogle Scholar
  4. 4.
    Paton, J.F., Boscan, P., Pickering, A.E.: The ying and yang of cardiac autonomic. Brain Res. Rev. 49(3), 555–565 (2005)CrossRefGoogle Scholar
  5. 5.
    Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1–R39 (2007)CrossRefGoogle Scholar
  6. 6.
    Linder, S.P., Wendelken, S.M., Wei, E.: McGrath: Using the morphology of photoplethysmogram peaks to detect changes in posture. J. Clin. Monit. Comput. 20(3), 151–158 (2006)CrossRefGoogle Scholar
  7. 7.
    Ichinose, M., Nishiyasu, T.: Arterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans. Front. Physiol. 3, 314 (2012)CrossRefGoogle Scholar
  8. 8.
    Task force of the European Society of cardiology the North American Society of Pacing Electrophysiology, Heart Rate Variability?: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 93(5):1043–1065 (1996)Google Scholar
  9. 9.
    Pikkujamsa, S.M., Makikallio, T.H., Sourander, L.B., Raiha, I.J.: Cardiac interbeat interval dynamics from childhood to senescence?: comparison of conventional and new measures based on fractals and Chaos theory. Circulation 100(4), 393–399 (1999)CrossRefGoogle Scholar
  10. 10.
    Lerma, C., Infante, O., Pérez-Grovas, H., José, M.V.: Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin. Physiol. Funct. Imaging 23(2), 72–80 (2003)CrossRefGoogle Scholar
  11. 11.
    Huikuri, H.V., Perkiömäki, J.S., Maestri, R., Pinna, G.D.: Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos. Trans. A. Math. Phys. Eng. Sci. 367(1892), 1223–1238 (2009)CrossRefGoogle Scholar
  12. 12.
    Raab, C., Wessel, N., Schirdewan, A., Kurths, J.: Large-scale dimension densities for heart rate variability analysis. Computers in Cardiology, pp. 985–988. (2005)Google Scholar
  13. 13.
    Seker, R., Saliu, S., Birand, A., Kudaiberdieva, G.: Validity test for a set of nonlinear measures for short data length with reference to short-term heart rate variability signal. J. Syst. Integr. 10(1), 41–53 (2000)CrossRefGoogle Scholar
  14. 14.
    Aubert, A.E., Ramaekers, D.: Neurocardiology: the benefits of irregularity. The basics of methodology, physiology and current clinical applications. Acta Cardiol. 54(3), 107–120 (1999)Google Scholar
  15. 15.
    Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plot based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66(2), 1–8 (2002)Google Scholar
  16. 16.
    Webber, C.L.J., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)Google Scholar
  17. 17.
    McGuire, G., Azar, N.B., Shelhamer, M.: Recurrence matrices and the preservation of dynamical properties. Phys. Lett. A 237(1), 43–47 (1997)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Thiel, M., Romano, M., Kurths, J.: How much information is contained in a recurrence plot? Phys. Lett. A 330(5), 343–349 (2004)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Lazarova, Z.: Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin. Physiol. Funct. Imaging 28(5), 326–331 (2008)CrossRefGoogle Scholar
  20. 20.
    González, H., Infante, O., Pérez-Grovas, H., José, M.V., Lerma, C.: Nonlinear dynamics of heart rate variability in response to orthostatism and hemodialysis in chronic renal failure patients: Recurrence analysis approach. Med. Eng. Phys. 35(2), 178–187 (2013)CrossRefGoogle Scholar
  21. 21.
    Porta, A., Castiglioni, P., Di Rienzo, M., Bari, V., et al.: Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. J. Appl. Physiol. 113(12), 1810–1820 (2012)CrossRefGoogle Scholar
  22. 22.
    Martínez-García, P., Lerma, C., Infante, O.: Baroreflex sensitivity estimation by the sequence method with delayed signals. Clin. Auton. Res. 22(6), 289–297 (2012)CrossRefGoogle Scholar
  23. 23.
    Javorka, M., Turianikova, Z., Tonhajzerova, I., Javorka, K., Baumert, M.: The effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamics. Physiol. Meas. 30(1), 29–41 (2009)CrossRefGoogle Scholar
  24. 24.
    Russek, M.: Fisiología. Células, Órganos y Sistemas (Physiology. Cells, Organs and System). In: Muñoz-Martínez J, García X (eds) FCE México, p 500. (1988)Google Scholar
  25. 25.
    Estañol, B., Porras-Betancourt, M., Sánchez-Torres, G., Martínez-Memije, R. et al: Control neural de la circulación periférica y de la presión arterial (Neural control of peripheral circulation and blood pressure). Arch. Cardiol. Mex. 79(15), 109–116 (2009)Google Scholar
  26. 26.
    Martínez-García, P., Lerma, C., Infante, O.: Relation of the baroreflex mechanism with the photoplethysmographic volume in healthy humans during orthostatism. Arch. Cardiol. Mex. 82(2), 82–90 (2012)Google Scholar
  27. 27.
    Chan, G.S.H., Fazalbhoy, A., Birznieks, I., Macefield, V.G. et al.: Spontaneous fluctuations in the peripheral photoplethysmographic waveform: roles of arterial pressure and muscle sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 302(3), H826–H936 (2012)Google Scholar
  28. 28.
    Nitzan, M., de Boer, H., Turivnenko, S., Babchenko, A., Sapoznikov, D.: Power spectrum analysis of spontaneous fluctuations in the photoplethysmographic signal. J. Basic Clin. Physiol. Pharmacol. 5(3–4), 269–276 (1994)Google Scholar
  29. 29.
    Infante, O., Valenzuela, F., Polo, S.: Algoritmo que utiliza la segunda derivada para identificar el complejo QRS en tiempo real (Algorithm that uses the second derivative to identify the QRS complex in real time). Rev. Méx. Ing. Bioméd 13, 23 (1992)Google Scholar
  30. 30.
    Infante, O., Cortés, S.: Relación entre el pulso fotopletismográfico digital y la presión arterial incruenta latido a latido ante el reto ortostático (Relationship between photoplethysmographic pulse and digital noninvasive beat to beat blood pressure during the orthostatic challenge). In: Müller-Karger, C., Wong, S., La Cruz, A. (eds) IV Latin American Congress on Biomedical Engineering, Bioengineering Solutions for Latin America Health 2007 IFMBE Proceedings, vol. 8, pp. 51–55 (2008)Google Scholar
  31. 31.
    Marwan, N., Romano, C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Marwan, N.: A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164(1), 3–12 (2008)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Webber, C.L., Zbilut, J.P.: Recurrence Quantification Analysis of Nonlinear Dynamical Systems. In: Van Orden, GC., Riley, MA. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, Web Book (2005)Google Scholar
  34. 34.
    Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos 21(14), 1003–1017 (2011)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Zbilut, J.P., Webber, C.L.: Laminar recurrences, maxline, unstable singularities and biological dynamics. Eur. Phys. J. Spec. Top. 164(1), 55–65 (2008)CrossRefGoogle Scholar
  36. 36.
    Aguado, A., Infante, O., Lerma, C.: Recurrence plot analysis of heart rate and systolic blood pressure: a strategy for embedding parameters estimation. Paper presented at the 5th international symposium on recurrence plots, Chicago, 14–16 Aug 2013Google Scholar
  37. 37.
    Gao, J.B., Cao, Y., GuLY, H.R.: Detection of weak transitions in signal dynamics using recurrence time statistics. Phys. Lett. A 317(1–2), 64–72 (2003)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, pp.379–423, 623–656 (1948)Google Scholar
  39. 39.
    Fisher, J.P., Paton, J.F.R.: The sympathetic nervous system and blood pressure in humans: implications for hypertension. J. Hum. Hypertens. 26(8), 463–475 (2012)CrossRefGoogle Scholar
  40. 40.
    Naschitz, J.E., Rosner, I., Shaviv, N., et al.: Assessment of cardiovascular reactivity by fractal and recurrence quantification analysis of heart rate and pulse transit time. J. Hum. Hypertens. 17(2), 111–118 (2003)CrossRefGoogle Scholar
  41. 41.
    Levins, R.: On the threshold of complexity. Presented at Simposio Complejidad y Multidisciplina. Centro de Ciencias de la Complejidad, México, 4–6 November 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hortensia González
    • 1
  • Oscar Infante
    • 2
  • Claudia Lerma
    • 2
  1. 1.Laboratorio de Biofísica de Sistemas Excitables Facultad de CienciasUniversidad Nacional Autónoma de MéxicoTlalpanMexico
  2. 2.Departamento de Instrumentación ElectromecánicaInstituto Nacional de Cardiología Ignacio ChávezTlalpanMexico

Personalised recommendations