Time Parallel Simulation for Dynamic Fault Trees

  • T. H. Dao Thi
  • J. M. Fourneau
  • N. Pekergin
  • F. Quessette
Conference paper


Dynamic Fault Trees (DFT) are a generalization of Fault Trees which allow the evaluation of the reliability of complex and redundant systems. We propose to analyze DFT by a new version of time-parallel simulation method we have recently introduced. This method takes into account the monotonicity of the sample-paths to derive upper and lower bounds of the paths which become tighter when we increase the simulation time. As some gates of the DFT are not monotone, we adapt our method.



This work was partially supported by grant ANR MARMOTE (ANR-12-MONU-0019).


  1. 1.
    H. Boudali, P. Crouzen, M. Stoelinga, Dynamic fault tree analysis using input/output interactive markov chains, in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, Edinburgh, UK, pp. 708–717 (2007)Google Scholar
  2. 2.
    P. Brémaud, Markov Chains: Gibbs fields, Monte Carlo Simulation and Queues (Springer-Verlag, New York, 1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    J.-M. Fourneau, I. Kadi, N. Pekergin, Improving time parallel simulation for monotone systems, in 13th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, ed. by S.J. Turner, D. Roberts, W. Cai, A. El-Saddik, Singapore, pp. 231–234 (2009)Google Scholar
  4. 4.
    J.-M. Fourneau, F. Quessette, Tradeoff between accuracy and efficiency in the time-parallel simulation of monotone systems, in EPEW 2012, Munich (2012)Google Scholar
  5. 5.
    G. Merle, J.-M. Roussel, J.-J. Lesage, Algebraic determination of the structure function of dynamic fault trees. Reliab. Eng. Syst. Saf. 96(2), 267–277 (2011)CrossRefGoogle Scholar
  6. 6.
    NASA. Fault tree handbook, nureg-0492, technical report, United States Nuclear Regulatory Commission (1981)Google Scholar
  7. 7.
    D. Nicol, A. Greenberg, B. Lubachevsky, Massively parallel algorithms for trace-driven cache simulations. IEEE Trans. Parallel Distrib. Syst. 5(8), 849–859 (1994)CrossRefGoogle Scholar
  8. 8.
    K.D. Rao, V. Gopika, V.V.S.S. Rao, H.S. Kushwaha, A.K. Verma, A. Srividya, Dynamic fault tree analysis using monte carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Yuge, S. Yanagi, Quantitative analysis of a fault tree with priority and gates. Reliab. Eng. Syst. Saf. 93(11), 1577–1583 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • T. H. Dao Thi
    • 1
    • 2
  • J. M. Fourneau
    • 1
  • N. Pekergin
    • 3
  • F. Quessette
    • 1
  1. 1.PRiSM, CNRS UMR 8144VersaillesFrance
  2. 2.VIASM, Vietnam Institute for Advanced Study in MathematicsHanoiVietnam
  3. 3.LACLUniversité de Paris Est CréteilCréteilFrance

Personalised recommendations