Insect-Inspired Tactile Contour Sampling Using Vibration-Based Robotic Antennae

  • Thierry Hoinville
  • Nalin Harischandra
  • André F. Krause
  • Volker Dürr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8608)


Compared to vision, active tactile sensing enables animals and robots to perform unambiguous object localization, segmentation and shape recognition. Recently, we proposed a bio-inspired, CPG-based, active antennal control model, so-called Contour-net, which captures essential characteristics of antennal behavior in climbing stick insects. In simulation, this model provides a robust and effective way to trace contours and classify various 3D shapes. Here, we propose a physical robotic implementation of Contour-net using vibration-based active antennae. We show that combining tactile contour tracing with vibration-based distance estimation yields fairly accurate localization of contact events in 3D space.


Tactile contour tracing Tactile sampling Tactile localization Antenna Hopf oscillator Stick insect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE Special Issue on Program Generation, Optimization, and Platform Adaptation 93(2), 216–231 (2005)Google Scholar
  2. 2.
    Harischandra, N., Dürr, V.: Predictions of self-induced mechanoreceptive sensor readings in an insect-inspired active tactile sensing system. In: International Symposium on Adaptive Motion of Animals and Machines (AMAM), pp. 59–62 (2013)Google Scholar
  3. 3.
    Kaneko, M., Kanayma, N., Tsuji, T.: Active antenna for contact sensing. IEEE Transactions on Robotics and Automation 14(2), 278–291 (1998)CrossRefGoogle Scholar
  4. 4.
    Kim, D.E., Möller, R.: Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems 55(3), 229–243 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Krause, A.F., Dürr, V.: Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioural Neuroscience 6(30), 1–17 (2012)Google Scholar
  6. 6.
    Krause, A.F., Hoinville, T., Harischandra, N., Dürr, V.: Contour-net - a model for tactile contour-tracing and shape-recognition. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence, pp. 92–101 (2014)Google Scholar
  7. 7.
    Krause, A.F., Winkler, A., Dürr, V.: Central drive and proprioceptive control of antennal movements in the walking stick insect. Journal of Physiology-Paris 107(1-2), 116–129 (2013)CrossRefGoogle Scholar
  8. 8.
    Lederman, S., Klatzky, R.: Haptic perception: A tutorial. Attention, Perception, & Psychophysics 71(7), 1439–1459 (2009), doi:10.3758/APP.71.7.1439CrossRefGoogle Scholar
  9. 9.
    Lee, J., Sponberg, S.N., Loh, O.Y., Lamperski, A.G., Full, R.J., Cowan, N.J.: Templates and anchors for antenna-based wall following in cockroaches and robots. IEEE Transactions on Robotics 24(1), 130–143 (2008)CrossRefGoogle Scholar
  10. 10.
    Lee, M., Nicholls, H.: Review article tactile sensing for mechatronics - a state of the art survey. Mechatronics 9(1), 1–31 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mongeau, J.M., Demir, A., Lee, J., Cowan, N.J., Full, R.J.: Locomotion- and mechanics-mediated tactile sensing: antenna reconfiguration simplifies control during high-speed navigation in cockroaches. J. Exp. Biol. 216, 4530–4541 (2013)CrossRefGoogle Scholar
  12. 12.
    Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Dürr, V.: An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in Neurorobotics 6(8), 1–18 (2012)Google Scholar
  13. 13.
    Prescott, T.J., Diamond, M.E., Wing, A.M.: Active touch sensing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2989–2995 (2011)CrossRefGoogle Scholar
  14. 14.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 586–591 (1993)Google Scholar
  15. 15.
    Russell, R.A., Wijaya, J.A.: Object location and recognition using whisker sensors. In: Australasian Conference on Robotics and Automation, pp. 761–768 (2003)Google Scholar
  16. 16.
    Schütz, C., Dürr, V.: Active tactile exploration for adaptive locomotion in the stick insect. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1581), 2996–3005 (2011)CrossRefGoogle Scholar
  17. 17.
    Solomon, J.H., Hartmann, M.J.: Biomechanics: Robotic whiskers used to sense features. Nature 443(7111), 525 (2006)CrossRefGoogle Scholar
  18. 18.
    Staudacher, E., Gebhardt, M.J., Dürr, V.: Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv. Insect Physiol. 32, 49–205 (2005)Google Scholar
  19. 19.
    Sullivan, J.C., Mitchinson, B., Pearson, M.J., Evans, M., Lepora, N.F., Fox, C.W., Melhuish, C., Prescott, T.J.: Tactile discrimination using active whisker sensors. IEEE Sensors Journal 12(2), 350–362 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thierry Hoinville
    • 1
  • Nalin Harischandra
    • 1
  • André F. Krause
    • 1
    • 2
  • Volker Dürr
    • 1
  1. 1.Department of Biological CyberneticsUniversity of BielefeldGermany
  2. 2.Cognitive Interaction Technology - Center of Excellence (CITEC)University of BielefeldGermany

Personalised recommendations