Spatial and Frequency-Based Variational Methods for Perceptually Inspired Color and Contrast Enhancement of Digital Images

Chapter

Abstract

In the past 20 years, variational principles in image processing and computer vision flourished, often allowing a deep comprehension and a more efficient solution to many problems. As this chapter presents, this also holds true for color image processing. We start by discussing the fundamental result about the interpretation of histogram equalization as the minimization of a suitable functional. This functional is given by two opponent terms: the first being a global quadratic adjustment to the middle gray level, and the second representing a global contrast enhancement term. It is proven here that this analytical form is shared by the so-called perceptual functionals, which allow an enhancement of color images in line with the most important human visual system features. For perceptual functionals, the adjustment is entropic and contrast enhancement is local and invariant under global illumination changes. It is also highlighted that the variational setting provides a unified framework where existing perceptually inspired color improvement models can be seen as particular instances. In the end, the wavelet version of this framework is discussed in detail.

References

  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, Birkhauser (2005)Google Scholar
  2. 2.
    Banich, N., Loncaric, S.: Light random sprays retinex: Exploiting the noisy illumination estimation. IEEE Signal Process. Lett. 20, 1240–1243 (2013)CrossRefGoogle Scholar
  3. 3.
    Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16, 1058–1072 (2007)Google Scholar
  4. 4.
    Bertalmío, M., Caselles, V., Provenzi, E.: Issues about the retinex theory and contrast enhancement. Int. J. Comput. Vision. 83,101–119 (2009)CrossRefGoogle Scholar
  5. 5.
    Ciarlet, P.: Introduction to numerical linear algebra and optimisation. Cambridge University Press, Melbourne (1989)Google Scholar
  6. 6.
    Frankle, J., McCann, JJ.: Method and apparatus for lightness imaging. United States Patent, US 4,348,336. (1983)Google Scholar
  7. 7.
    Gonzales, R., Woods, R.: Digital image processing. Prentice Hall, Upper Saddle River (2002)Google Scholar
  8. 8.
    Han, Y., Zheng, D., Baciu, G., Feng, X., Li, M.: Fuzzy region competition-based auto-color-theme design for textile images. Textile Res. J. 83(6), 638–650 (2013)CrossRefGoogle Scholar
  9. 9.
    Hubel, D.: Eye, brain, and vision. Scientific American Library, New York (1995)Google Scholar
  10. 10.
    Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Intern. J. Comput. Vis. 52(1), 07–23 (2003)CrossRefGoogle Scholar
  11. 11.
    Kuang, J., Johnson, G.M., Fairchild, M.D.: iCAM06: A refined image appearance model for HDR image rendering. J. Vis. Commun. Image R. 18, 406–414 (2007)CrossRefGoogle Scholar
  12. 12.
    Land, E., McCann, J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)CrossRefGoogle Scholar
  13. 13.
    Li, H., Zhang, L., Shen, H.: A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(8), 3053–3065 (2012)CrossRefGoogle Scholar
  14. 14.
    Mallat, S.: A wavelet tour of signal processing, 3rd ed. Academic Press, San Diego (1999)Google Scholar
  15. 15.
    Montagna, R., Finlayson, G.D.: Constrained pseudo-Brownian motion and its application to image enhancement. J. Opt. Soc. Am. A. 28(8), 1677–1688 (2011)CrossRefGoogle Scholar
  16. 16.
    Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 458–474 (2009)CrossRefGoogle Scholar
  17. 17.
    Provenzi, E.: Boosting the stability of wavelet-based contrast enhancement of color images through gamma transformations. J. Modern Opt. 60, 1145–1150 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Provenzi, E., Caselles, V.: A wavelet perspective on variational perceptually-inspired color enhancement. Int. J. Comput. Vis. 106, 153–171 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the Retinex algorithm. J. Opt. Soc. Am. A. 22(12), 2613–2621 (2005)Google Scholar
  20. 20.
    Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray retinex: A new retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 16(1), 162–171 (2007)Google Scholar
  21. 21.
    Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recognit. Lett. 24, 1663–1677 (2003)CrossRefGoogle Scholar
  22. 22.
    Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Diff. Eq. 135, 238–266 (1997)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Shapley, R., Enroth-Cugell, C.: Visual adaptation and retinal gain controls. Prog. Retin. Res. 3 (Chap 9), 263–346 (1984)CrossRefGoogle Scholar
  24. 24.
    Strang, G., Nguyen, T.: Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley (1996)Google Scholar
  25. 25.
    von Kries, J.: Chromatic Adaptation. Festschrift der Albrecht-Ludwigs-Universität 135:145–158 (1902)Google Scholar
  26. 26.
    Wyszecky, G., Stiles, W.S.: Color science: Concepts and methods, quantitative data and formulas. Wiley, New York (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire MAP5 (UMR CNRS 8145)Université Paris Descartes, Sorbonne Paris CitéParisFrance

Personalised recommendations