Advertisement

Early Detection Method of Alzheimer’s Disease Using EEG Signals

  • Dhiya Al-Jumeily
  • Shamaila Iram
  • Abir Jaffar Hussain
  • Vialatte Francois-Benois
  • Paul Fergus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8590)

Abstract

Different studies have stated that electroencephalogram signals in Alzheimer’s disease patients usually have less synchronization as compare to healthy subjects. Changes in electroencephalogram signals start at early stage but clinically, these changes are not easily detected. To detect this perturbation, three neural synchrony measurement techniques have been examined with three different sets of data. This research work have successfully reported the experiment of comparing right and left temporal of brain with the rest of the brain area (frontal, central and occipital), as temporal regions are relatively the first ones to be affected by Alzheimer’s disease. A new approach using principal component analysis before applying neural synchrony measurement techniques has been presented and compared with to other existing techniques. The simulation results indicated that applying principal component analysis before synchrony measurement techniques show significantly improvement over the lateral one. The results of the experiments were analyzed using Mann-Whitney U test.

Keywords

Electroencephalogram signals EEG Signals Alzheimer’s Disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, J., Webster, S., Lue, L.F., Brachova, L., Civin, W.H., Emmerling, M., Shivers, B., Walker, D., Mcgeer, P.: Inflammation and Alzheimer’s Disease Pathogenesis. Neurobiology of Aging 17, 681–686 (1996)CrossRefGoogle Scholar
  2. 2.
    Babiloni, C., Ferri, R., Binetti, G., Cassarino, A., Forno, G.D., Ercolani, M., Ferreri, F., Frisoni, G.B., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Rundo, F., Stam, C.J., Musha, T., Vecchio, F., Rossini, P.M.: Fronto-Parietal Coupling of Brain Rhythms in Mild Cognitive Impairment: A Multicentric EEG Study. Brain Research Bulletin 69, 63–73 (2006)CrossRefGoogle Scholar
  3. 3.
    Babiloni, C.G., Frisoni, B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., Geroldi, C., Fracassi, C., Eusebi, F., Ferri, R., Rossini, P.M.: Hippocampal Volume and Cortical Sources of EEG Alpha Rhythms in Mild Cognitive Impairment and Alzheimer Disease. Neuroimage 44, 123–135 (2009)CrossRefGoogle Scholar
  4. 4.
    Frisoni, G.B., Padovani, A., Wahlund, L.O.: The Predementia Diagnosis of Alzheimer Disease. Alzheimer. Dis. Assoc. Disord. 18, 51–53 (2004)CrossRefGoogle Scholar
  5. 5.
    Jelles, B., Scheltens, P., Van Der Flier, W.M., Jonkman, E.J.: Global Dynamical Analysis of The EEG in Alzheimer’s Disease: Frequency-Specific Changes of Functional Interactions. Clinical Neurophysiology 119 (2008)Google Scholar
  6. 6.
    Faustino, M.C., Serquiña, R.P., Rapp, P.E., Albano, A.M.: Phase Synchronization of Electroencephalographic Signals in The Different Frequency Bands. Philippine Science Letters 5, 131–137 (2012)Google Scholar
  7. 7.
    Fingelkurts, A.A., Fingelkurts, A.A., Kähkönen, S.: Functional Connectivity in The Brain—Is It An Elusive Concept? Neuroscience & Biobehavioral Reviews 28, 827–836 (2005)CrossRefGoogle Scholar
  8. 8.
    Delbeuck, X., Van Der Linden, M., Collette, F.: Alzheimer’ Disease As A Disconnection Syndrome? Neuropsychology Review 13, 79–92 (2003)CrossRefGoogle Scholar
  9. 9.
    Stam, C.J., Nolte, G., Daffertshofer, A.: Phase Lag Index: Assessment of Functional Connectivity From Multi Channel EEG and MEG With Diminished Bias From Common Sources. Human Brain Mapping 28, 1178–1193 (2007)CrossRefGoogle Scholar
  10. 10.
    Singer, W.: Neuronal Synchrony: A Versatile Code for The Definition of Relations? Neuron 24 (1999)Google Scholar
  11. 11.
    Fries, P.: A Mechanism for Cognitive Dynamics: Neuronal Communication Through Neuronal Coherence. Trends in Cognitive Sciences 9, 474–480 (2005)CrossRefGoogle Scholar
  12. 12.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The Brainweb: Phase Synchronization and Large-Scale Integration. Neuroscience 2 (2001)Google Scholar
  13. 13.
    Claus, J.J., Strijers, R.L.M., Jonkman, E.J., Ongerboer De Visser, B.W., Jonker, C., Walstra, G.J.M., Scheltens, P., Van Gool, W.A.: The Diagnostic Value of Electroencephalography in Mild Senile Alzheimer’s Disease. Clinical Neurophysiology 110, 825–832 (1999)CrossRefGoogle Scholar
  14. 14.
    Gallego-Jutgla, E., Elgendi, M., Vialatte, F., Sole-Casals, J., Cichocki, A., Latchoumane, C., Jaesung, J., Dauwels, J.: Diagnosis of Alzheimer’s Disease From EEG By Means of Synchrony Measures in Optimized Frequency Bands. In: International Conference (EMBC), pp. 4266–4270 (2012)Google Scholar
  15. 15.
    Dauwels, J., Vialatte, F.B., Cichocki, A.: A Comparative Study of Synchrony Measures for The Early Detection of Alzheimer’s Disease Based on EEG. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part I. LNCS, vol. 4984, pp. 112–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    JÓHannesson, G., Brun, A., Gustafson, I., Ingvar, D.H.: EEG in Presenile Dementia Related to Cerebral Blood Flow and Autopsy Findings. Acta Neurologica Scandinavica 56, 89–103 (1977)CrossRefGoogle Scholar
  17. 17.
    Szelies, B., Grond, M., Herholz, K., Kessler, J., Wullen, T., Heiss, W.D.: Quantitative EEG Mapping and PET in Alzheimer’s Disease. Journal of the Neurological Sciences 110, 46–56 (1992)CrossRefGoogle Scholar
  18. 18.
    Huang, C., Wahlund, L.O., Dierks, T., Julin, P., Winblad, B., Jelic, V.: Discrimination of Alzheimer’s Disease and Mild Cognitive Impairment By Equivalent EEG Sources: A Cross-Sectional and Longitudinal Study. Clinical Neurophysiology 111, 1961–1967 (2000)CrossRefGoogle Scholar
  19. 19.
    Grunwald, M., Busse, F., Hensel, A., Kruggel, F., Riedel-Heller, S., Wolf, H., Arendt, T., Gertz, H.J.: Correlation Between Cortical Theta Activity and Hippocampal Volumes in Health, Mild Cognitive Impairment, and Mild Dementia. J. Clin. Neurophysiol. 18 (2001)Google Scholar
  20. 20.
    Fonseca, L.C., Tedrus, G.M., Prandi, L.R., Andrade, A.C.: Quantitative Electroencephalography Power and Coherence Measurements in The Diagnosis of Mild and Moderate Alzheimer’s Disease. Arq Neuropsiquiatr 69 (2011)Google Scholar
  21. 21.
    Stam, C.J., Jones, B.F., Manshanden, I.A., Van Cappellen Van Walsum, M., Montez, T., Verbunt, J.P.A., De Munck, J.C.B., Van Dijk, W., Berendse, H.W., Scheltens, P.: Magnetoencephalographic Evaluation of Resting-State Functional Connectivity in Alzheimer’s Disease. Neuroimage 32, 1335–1344 (2006)CrossRefGoogle Scholar
  22. 22.
    Hogan, M.J., Swanwick, G.R., Kaiser, J.J., Rowan, M., Lawlor, B.: Memory-Related EEG Power and Coherence Reductions in Mild Alzheimer’s Disease. International Journal of Psychophysiology 49, 147–163 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dhiya Al-Jumeily
    • 1
  • Shamaila Iram
    • 1
  • Abir Jaffar Hussain
    • 1
  • Vialatte Francois-Benois
    • 2
  • Paul Fergus
    • 1
  1. 1.Applied Computing Research GroupLiverpool John Moores UniversityLiverpoolUK
  2. 2.Laboratoire SIGMAESPCI ParisTechParisFrance

Personalised recommendations