Conditional Lower Bounds for Failed Literals and Related Techniques

  • Matti Järvisalo
  • Janne H. Korhonen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)

Abstract

We prove time-complexity lower bounds for various practically relevant probing-based CNF simplification techniques, namely failed literal detection and related techniques. Specifically, we show that improved algorithms for these simplification techniques would give a 2δn time algorithm for CNF-SAT for some δ < 1, violating the Strong Exponential Time Hypothesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: Proc. AAAI, pp. 613–619. AAAI Press / The MIT Press (2002)Google Scholar
  2. 2.
    Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Berre, D.L.: Exploiting the real power of unit propagation lookahead. Electronic Notes in Discrete Mathematics 9, 59–80 (2001)CrossRefGoogle Scholar
  4. 4.
    Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition 2013. In: Proceedings of SAT Competition 2013. Department of Computer Science Series of Publications B, vol. B-2013-1, pp. 51–52. University of Helsinki (2013)Google Scholar
  5. 5.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 85. IOS Press (2009)Google Scholar
  6. 6.
    Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(1), 52–59 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique k-SAT: An isolation lemma for k-CNFs. Journal of Computer and System Sciences 74(3), 386–393 (2008)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlstrom, M.: On problems as hard as CNF-SAT. In: Proc. CCC, pp. 74–84. IEEE (2012)Google Scholar
  10. 10.
    Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfaction problem. In: Proc. IJCAI, pp. 412–417. Morgan Kaufmann (1997)Google Scholar
  11. 11.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Fourdrinoy, O., Grégoire, É., Mazure, B., Sais, L.: Reducing hard SAT instances to polynomial ones. In: Proc. IRI, pp. 18–23, IEEE Systems, Man, and Cybernetics Society (2007) Google Scholar
  13. 13.
    Freeman, J.: Improvements to propositional satisfiability search algorithms. PhD thesis. University of Pennsylvania, USA (1995)Google Scholar
  14. 14.
    Gelder, A.V.: Toward leaner binary-clause reasoning in a satisfiability solver. Ann. Math. Artif. Intell. 43(1), 239–253 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR via nested input resolution. J. Autom. Reasoning 52(1), 31–65 (2014)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In: Proc. DAC, pp. 582–587. IEEE (2007)Google Scholar
  18. 18.
    Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Implementing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 201–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Revisiting hyper binary resolution. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 77–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere, et al. (eds.) [5], pp. 155–184Google Scholar
  24. 24.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Autom. Reasoning 49(4), 583–619 (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Kullmann, O.: Investigating the behaviour of a SAT solver on random formulas (2002)Google Scholar
  28. 28.
    Kullmann, O.: Fundaments of branching heuristics. In: Biere, et al. (eds.) [5], pp. 205–244Google Scholar
  29. 29.
    Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Inf. Process. Lett. 76(1-2), 75–81 (2000)CrossRefMATHGoogle Scholar
  30. 30.
    Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Proc. AAAI, pp. 291–296. AAAI Press / The MIT Press (2000)Google Scholar
  31. 31.
    Li, C.M.: Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Proc. IJCAI, pp. 366–371. Morgan Kaufmann (1997)Google Scholar
  32. 32.
    Lynce, I., Marques-Silva, J.P.: Probing-based preprocessing techniques for propositional satisfiability. In: Proc. ICTAI, p. 105. IEEE Computer Society (2003)Google Scholar
  33. 33.
    Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded semantics for normal LP. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 421–430. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  35. 35.
    Piette, C., Hamadi, Y., Sais, L.: Vivifying propositional clausal formulae. In: Proc. ECAI. FAIA, pp. 525–529. IOS Press (2008)Google Scholar
  36. 36.
    Prosser, P., Stergiou, K., Walsh, T.: Singleton consistencies. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 353–368. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Ptracu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proc. SODA, pp. 1065–1075 (2010)Google Scholar
  38. 38.
    Sheeran, M., Stålmarck, G.: A tutorial on Stålmarck’s proof procedure for propositional logic. Formal Methods in System Design 16(1), 23–58 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matti Järvisalo
    • 1
  • Janne H. Korhonen
    • 1
  1. 1.HIIT & Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations