MUS Extraction Using Clausal Proofs

  • Anton Belov
  • Marijn J. H. Heule
  • Joao Marques-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)


Recent work introduced an effective method for extraction of reduced unsatisfiable cores of CNF formulas as a by-product of validation of clausal proofs emitted by conflict-driven clause learning SAT solvers. In this paper, we demonstrate that this method for trimming CNF formulas can also benefit state-of-the-art tools for the computation of a Minimal Unsatisfiable Subformula (MUS). Furthermore, we propose a number of techniques that improve the quality of trimming, and demonstrate a significant positive impact on the performance of MUS extractors from the improved trimming.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 592–607. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Communications 25(2), 97–116 (2012)MATHMathSciNetGoogle Scholar
  3. 3.
    Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: [24], pp.197–200Google Scholar
  4. 4.
    Audemard, G., Lagniez, J.M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: Application to MUS extraction, In: [25], pp. 309–317Google Scholar
  5. 5.
    Lagniez, J.M., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: [25], pp. 276–292Google Scholar
  6. 6.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: DATE, pp. 10880–10885. IEEE Computer Society (2003)Google Scholar
  8. 8.
    Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. Journal of Satisfiability 8, 123–128 (2012)Google Scholar
  9. 9.
    Wieringa, S., Heljanko, K.: Asynchronous multi-core incremental SAT solving. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 139–153. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: DATE, pp. 10886–10891 (2003)Google Scholar
  11. 11.
    Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs, In: [24], pp. 181–188Google Scholar
  12. 12.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)Google Scholar
  15. 15.
    Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: ISAIM (2008)Google Scholar
  16. 16.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FMCAD, pp. 121–128 (October 2010)Google Scholar
  18. 18.
    Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications. In: ISMVL, pp. 9–14 (2010)Google Scholar
  21. 21.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefGoogle Scholar
  22. 22.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C. (ed.) IJCAI, pp. 399–404 (2009)Google Scholar
  23. 23.
    Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 54–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23. IEEE (2013)Google Scholar
  25. 25.
    Järvisalo, M., Van Gelder, A. (eds.): SAT 2013. LNCS, vol. 7962. Springer, Heidelberg (2013)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anton Belov
    • 1
  • Marijn J. H. Heule
    • 2
  • Joao Marques-Silva
    • 1
    • 3
  1. 1.Complex and Adaptive Systems LaboratoryUniversity College DublinIreland
  2. 2.The University of Texas at AustinUSA
  3. 3.IST/INESC-IDTechnical University of LisbonPortugal

Personalised recommendations