MPIDepQBF: Towards Parallel QBF Solving without Knowledge Sharing

  • Charles Jordan
  • Lukasz Kaiser
  • Florian Lonsing
  • Martina Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)

Abstract

Inspired by recent work on parallel SAT solving, we present a lightweight approach for solving quantified Boolean formulas (QBFs) in parallel. In particular, our approach uses a sequential state-of-the-art QBF solver to evaluate subformulas in working processes. It abstains from globally exchanging information between the workers, but keeps learnt information only locally. To this end, we equipped the state-of-the-art QBF solver DepQBF with assumption-based reasoning and integrated it in our novel solver MPIDepQBF as backend solver. Extensive experiments on standard computers as well as on the supercomputer Tsubame show the impact of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. Journal on Satisfiability, Boolean Modeling and Computation 5(1-4), 133–191 (2008)MathSciNetGoogle Scholar
  2. 2.
    Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013. In: Proc. of the SAT Competition 2013. Dep. of Computer Science Series of Publications B, University of Helsinki, vol. B-2013-1, pp. 51–52 (2013)Google Scholar
  3. 3.
    Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Büning, H.K., Bubeck, U.: Theory of Quantified Boolean Formulas. In: Handbook of Satisfiability, pp. 735–760. IOS Press (2009)Google Scholar
  5. 5.
    Büning, H.K., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas. Information and Computation 117(1), 12–18 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Feldmann, R., Monien, B., Schamberger, S.: A Distributed Algorithm to Evaluate Quantified Boolean Formulae. In: Proc. of the 17th Nat. Conference on Artificial Intelligence (AAAI 2000), pp. 285–290. AAAI (2000)Google Scholar
  7. 7.
    Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with Quantified Boolean Formulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)Google Scholar
  8. 8.
    Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0. Journal on Satisfiability, Boolean Modeling and Computation 7(2-3), 83–88 (2010)Google Scholar
  9. 9.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas. Journal of Artificial Intelligence Research 26(1), 371–416 (2006)MATHMathSciNetGoogle Scholar
  10. 10.
    Goultiaeva, A., Bacchus, F.: Recovering and Utilizing Partial Duality in QBF. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 83–99. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with Counterexample Guided Refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Lewis, M., Schubert, T., Becker, B.: QMiraXT – a multithreaded QBF solver. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV (2009)Google Scholar
  13. 13.
    Lewis, M., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.: Parallel QBF Solving with Advanced Knowledge Sharing. Fundamenta Informaticae 107(2-3), 139–166 (2011)MathSciNetGoogle Scholar
  14. 14.
    Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on Satisfiability, Boolean Modeling and Computation 7, 71–76 (2010)Google Scholar
  15. 15.
    Lonsing, F., Egly, U., Van Gelder, A.: Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Marin, P., Miller, C., Lewis, M., Becker, B.: Verification of partial designs using incremental QBF solving. In: Proc. of the Int. Conf on Design, Automation & Test in Europe (DATE 2012), pp. 623–628. IEEE (2012)Google Scholar
  17. 17.
    Marin, P., Narizzano, M., Giunchiglia, E., Lewis, M.D.T., Schubert, T., Becker, B.: Comparison of knowledge sharing strategies in a parallel QBF solver. In: Proc. of the Int. Conf. on High Performance Computing & Simulation (HPCS 2009), pp. 161–167. IEEE (2009)Google Scholar
  18. 18.
    Mota, B.D., Nicolas, P., Stéphan, I.: A new parallel architecture for QBF tools. In: Proc. of the Int. Conf. on High Performance Computing and Simulation (HPCS 2010), pp. 324–330. IEEE (2010)Google Scholar
  19. 19.
    Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Vautard, J., Lallouet, A., Hamadi, Y.: A parallel solving algorithm for quantified constraints problems. In: Proc. of the 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2010), pp. 271–274. IEEE Computer Society (2010)Google Scholar
  21. 21.
    Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Charles Jordan
    • 1
  • Lukasz Kaiser
    • 2
  • Florian Lonsing
    • 3
  • Martina Seidl
    • 4
  1. 1.Division of Computer ScienceHokkaido UniversityJapan
  2. 2.LIAFACNRS & Université Paris DiderotFrance
  3. 3.Knowledge-Based Systems GroupTU WienAustria
  4. 4.Institute for Formal Models and VerificationJKU LinzAustria

Personalised recommendations