Advertisement

DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs

  • Nathan Wetzler
  • Marijn J. H. Heule
  • Warren A. HuntJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)

Abstract

The DRAT-trim tool is a satisfiability proof checker based on the new DRAT proof format. Unlike its predecessor, DRUP-trim, all presently known SAT solving and preprocessing techniques can be validated using DRAT-trim. Checking time of a proof is comparable to the running time of the proof-producing solver. Memory usage is also similar to solving memory consumption, which overcomes a major hurdle of resolution-based proof checkers. The DRAT-trim tool can emit trimmed formulas, optimized proofs, and new TraceCheck +  dependency graphs. We describe the output that is produced, what optimizations have been made to check RAT clauses, and potential applications of the tool.

Keywords

Dependency Graph Proof Checker Input Formula Extended Resolution Drat Format 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press (2010)Google Scholar
  2. 2.
    Audemard, G., Simon, L.: Glucose’s home page (2014), http://www.labri.fr/perso/lsimon/glucose/ (accessed: January 21, 2014)
  3. 3.
    Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT Competition 2013 (2013), http://www.satcompetition.org/2013/ (accessed: January 21, 2014)
  4. 4.
    Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4, 75–97 (2008)zbMATHGoogle Scholar
  5. 5.
    Biere, A.: Lingeling, Plingeling, and Treengeling (2014), http://fmv.jku.at/lingeling/ (accessed: January 27, 2014)
  6. 6.
    Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: International Workshop on Satisfiability Modulo Theories (SMT), pp. 1–5. ACM (2009)Google Scholar
  7. 7.
    Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 10886–10891. IEEE (2003)Google Scholar
  9. 9.
    Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 181–188. IEEE (2013)Google Scholar
  10. 10.
    Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 54–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, ch. 4, vol. 185, pp. 131–153. IOS Press (February 2009)Google Scholar
  17. 17.
    Rivest, R.L.: Partial-match retrieval algorithms. SIAM J. Comput. 5(1), 19–50 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483. Springer (1983)Google Scholar
  20. 20.
    Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2008)Google Scholar
  21. 21.
    Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT refutations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nathan Wetzler
    • 1
  • Marijn J. H. Heule
    • 1
  • Warren A. HuntJr.
    • 1
  1. 1.The University of Texas at AustinUSA

Personalised recommendations