Hypergraph Acyclicity and Propositional Model Counting

  • Florent Capelli
  • Arnaud Durand
  • Stefan Mengel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)


We show that the propositional model counting problem #SAT for CNF-formulas with hypergraphs that allow a disjoint branches decomposition can be solved in polynomial time. We show that this class of hypergraphs is incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest class of hypergraphs for which #SAT was known to be solvable in polynomial time so far. Furthermore, we present a polynomial time algorithm that computes a disjoint branches decomposition of a given hypergraph if it exists and rejects otherwise. Finally, we show that some slight extensions of the class of hypergraphs with disjoint branches decompositions lead to intractable #SAT, leaving open how to generalize the counting result of this paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13(3), 335–379 (1976), CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Combinatoria 67(1), 273–281 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Brault-Baron, J.: A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic. In: Computer Science Logic, 26th International Workshop/21st Annual Conference of the EACSL, pp. 137–151 (2012)Google Scholar
  4. 4.
    Cohen, D.A., Green, M.J., Houghton, C.: Constraint representations and structural tractability. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 289–303. Springer, Heidelberg (2009), CrossRefGoogle Scholar
  5. 5.
    Duris, D.: Some characterizations of γ and β-acyclicity of hypergraphs. Inf. Process. Lett. 112(16), 617–620 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM 30(3), 514–550 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York Inc. (2006)Google Scholar
  9. 9.
    Gottlob, G., Pichler, R.: Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width. SIAM Journal on Computing 33(2) (2004)Google Scholar
  10. 10.
    Miklós, Z.: Understanding Tractable Decompositions for Constraint Satisfaction. Ph.D. thesis. University of Oxford (2008)Google Scholar
  11. 11.
    Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Computer Science 481, 85–99 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Paulusma, D., Slivovsky, F., Szeider, S.: Model Counting for CNF Formulas of Bounded Modular Treewidth. In: 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, pp. 55–66 (2013)Google Scholar
  13. 13.
    Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2), 273–302 (1996), CrossRefMathSciNetGoogle Scholar
  14. 14.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. Journal of Discrete Algorithms 8(1), 50–64 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Slivovsky, F.: Personal communication (2014)Google Scholar
  16. 16.
    Slivovsky, F., Szeider, S.: Model Counting for Formulas of Bounded Clique-Width. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 677–687. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Florent Capelli
    • 1
  • Arnaud Durand
    • 1
    • 2
  • Stefan Mengel
    • 3
  1. 1.IMJ UMR 7586 - LogiqueUniversité Paris DiderotFrance
  2. 2.LSV UMR 8643ENS CachanFrance
  3. 3.Laboratoire d’Informatique, LIX UMR 7161Ecole PolytechniqueFrance

Personalised recommendations