Abstract

We propose Q(D)-resolution, a proof system for Quantified Boolean Formulas. Q(D)-resolution is a generalization of Q-resolution parameterized by a dependency scheme D. This system is motivated by the generalization of the QDPLL algorithm using dependency schemes implemented in the solver DepQBF. We prove soundness of Q(D)-resolution for a dependency scheme D that is strictly more general than the standard dependency scheme; the latter is currently used by DepQBF. This result is obtained by proving correctness of an algorithm that transforms Q(D)-resolution refutations into Q-resolution refutations and could be of independent practical interest. We also give an alternative characterization of resolution- path dependencies in terms of directed walks in a formula’s implication graph which admits an algorithmically more advantageous treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  2. 2.
    Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis. University of Paderborn (2010)Google Scholar
  5. 5.
    Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Büning, H.K., Subramani, K., Zhao, X.: Boolean functions as models for quantified Boolean formulas. Journal of Automated Reasoning 39(1), 49–75 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. Journal of Automated Reasoning 28(2) (2002)Google Scholar
  8. 8.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)MATHMathSciNetGoogle Scholar
  9. 9.
    Goultiaeva, A., Gelder, A.V., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Walsh, T. (ed.) Proceedings of IJCAI 2011, pp. 546–553. IJCAI/AAAI (2011)Google Scholar
  10. 10.
    Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Kleine Büning, H., Lettman, T.: Propositional logic: Deduction and algorithms. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  12. 12.
    Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis. Johannes Kepler University, Linz, Austria (April 2012)Google Scholar
  13. 13.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 512–527. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of Automated Reasoning 42(1), 77–97 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. Theory of Computing, pp. 1–9. ACM (1973)Google Scholar
  18. 18.
    Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Friedrich Slivovsky
    • 1
  • Stefan Szeider
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations