Incremental SAT solving under assumptions, introduced in Minisat, is in wide use. However, Minisat’s algorithm for incremental SAT solving under assumptions has two main drawbacks which hinder performance considerably. First, it is not compliant with the highly effective and commonly used preprocessor SatELite. Second, all the assumptions are left in the formula, rather than being represented as unit clauses, propagated, and eliminated. Two previous attempts to overcome these problems solve either the first or the second of them, but not both. This paper remedies this situation by proposing a comprehensive solution for incremental SAT solving under assumptions, where SatELite is applied and all the assumptions are propagated. Our algorithm outperforms existing approaches over publicly available instances generated by a prominent industrial application in hardware validation.


Symbolic Execution Unit Clause Variable Elimination Conjunctive Normal Form Formula Temporary Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balint, A., Manthey, N.: Boosting the performance of SLS and CDCL solvers by preprocessor tuning. In: Pragmatics of SAT (2013)Google Scholar
  2. 2.
    Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)Google Scholar
  3. 3.
    Bloem, R., Sharygina, N. (eds.): Proceedings of 10th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23. IEEE (2010)Google Scholar
  4. 4.
    Cabodi, G., Lavagno, L., Murciano, M., Kondratyev, A., Watanabe, Y.: Speeding-up heuristic allocation, scheduling and binding with SAT-based abstraction/refinement techniques. ACM Trans. Design Autom. Electr. Syst. 15(2) (2010)Google Scholar
  5. 5.
    Chockler, H., Ivrii, A., Matsliah, A., Moran, S., Nevo, Z.: Incremental formal verification of hardware. In: Bjesse, P., Slobodová, A. (eds.) FMCAD, pp. 135–143. FMCAD Inc. (2011)Google Scholar
  6. 6.
    Cimatti, A., Sebastiani, R. (eds.): SAT 2012. LNCS, vol. 7317. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  7. 7.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation of proof- and counterexample-based abstraction. In: Bloem, Sharygina (eds.) [3], pp. 181–188Google Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4) (2003)Google Scholar
  11. 11.
    Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in symbolic execution of microcode. In: Bloem, Sharygina (eds.) [3], pp. 121–128Google Scholar
  12. 12.
    Khasidashvili, Z., Kaiss, D., Bustan, D.: A compositional theory for post-reboot observational equivalence checking of hardware. In: FMCAD, pp. 136–143. IEEE (2009)Google Scholar
  13. 13.
    Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, Sebastiani (eds.) [6], pp. 242–255Google Scholar
  14. 14.
    Nadel, A., Ryvchin, V., Strichman, O.: UI-SAT benchmark set:
  15. 15.
    Nadel, A., Ryvchin, V., Strichman, O.: Preprocessing in incremental SAT. In: Cimatti, Sebastiani (eds.) [6], pp. 256–269Google Scholar
  16. 16.
    Nadel, A., Ryvchin, V., Strichman, O.: Preprocessing in incremental SAT. Technical Report IE/IS-2012-02, Technion (2012),
  17. 17.
    Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Silva, J.P.M., Sakallah, K.A.: Robust search algorithms for test pattern generation. In: FTCS, pp. 152–161 (1997)Google Scholar
  19. 19.
    Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A new incremental satisfiability engine. In: DAC, pp. 542–545. ACM (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Nadel
    • 1
  • Vadim Ryvchin
    • 1
    • 2
  • Ofer Strichman
    • 2
  1. 1.Design Technology Solutions GroupIntel CorporationHaifaIsrael
  2. 2.Information Systems EngineeringIE, TechnionHaifaIsrael

Personalised recommendations