Advertisement

Unified Characterisations of Resolution Hardness Measures

  • Olaf Beyersdorff
  • Oliver Kullmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8561)

Abstract

Various “hardness” measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations between the different hardness measures. In particular, we prove a generalised version of Atserias and Dalmau’s result on the relation between resolution width and space from [5].

Keywords

Boolean Function Hardness Measure Semantic Space Resolution Space Partial Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity yields lower bounds for satisfiability search. Journal of Computer and System Sciences 68, 238–268 (2004)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complexity in propositional calculus. SIAM Journal on Computing 31(4), 1184–1211 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. Journal of Automated Reasoning 35(1-3), 51–72 (2005)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Measuring the hardness of SAT instances. In: Fox, D., Gomes, C. (eds.) Proceedings of the 23th AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 222–228 (2008)Google Scholar
  5. 5.
    Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. Journal of Computer and System Sciences 74, 323–334 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Babka, M., Balyo, T., Čepek, O., Gurský, Š., Kučera, P., Vlček, V.: Complexity issues related to propagation completeness. Artificial Intelligence 203, 19–34 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Balyo, T., Gurský, Š., Kučera, P., Vlček, V.: On hierarchies over the SLUR class. In: Twelfth International Symposium on Artificial Intelligence and Mathematics, ISAIM 2012 (January 2012), http://www.cs.uic.edu/bin/view/Isaim2012/AcceptedPapers
  8. 8.
    Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: superpolynomial lower bounds for superlinear space. In: STOC 2012 Proceedings of the 44th Symposium on Theory of Computing, pp. 213–232 (2012)Google Scholar
  9. 9.
    Beck, C., Nordström, J., Tang, B.: Some trade-off results for polynomial calculus: extended abstract. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing (STOC 2013), pp. 813–822 (2013)Google Scholar
  10. 10.
    Ben-Sasson, E., Harsha, P.: Lower bounds for bounded depth Frege proofs via Buss-Pudlák games. ACM Transactions on Computational Logic 11(3) (2010)Google Scholar
  11. 11.
    Ben-Sasson, E., Nordström, J.: Short proofs may be spacious: An optimal separation of space and length in resolution. In: Proc. 49th IEEE Symposium on the Foundations of Computer Science, pp. 709–718 (2008)Google Scholar
  12. 12.
    Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separations and trade-offs via substitutions. In: Innovations in Computer Science, ICS 2010, January 7-9, pp. 401–416. Tsinghua University, Beijing (2011)Google Scholar
  13. 13.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Beyersdorff, O., Galesi, N., Lauria, M.: A lower bound for the pigeonhole principle in tree-like resolution by asymmetric prover-delayer games. Information Processing Letters 110(23), 1074–1077 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Beyersdorff, O., Galesi, N., Lauria, M.: A characterization of tree-like resolution size. Information Processing Letters 113(18), 666–671 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search procedures. ACM Transactions on Computational Logic 14(3) (2013)Google Scholar
  17. 17.
    Beyersdorff, O., Kullmann, O.: Hardness measures and resolution lower bounds. Tech. Rep. arXiv:1310.7627v2 [cs.CC], arXiv (February 2014)Google Scholar
  18. 18.
    Buro, M., Kleine Büning, H.: On resolution with short clauses. Annals of Mathematics and Artificial Intelligence 18(2-4), 243–260 (1996)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Čepek, O., Kučera, P., Vlček, V.: Properties of SLUR formulae. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 177–189. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Chan, S.M.: Just a pebble game. In: 2013 IEEE Conference on Computational Complexity (CCC), pp. 133–143 (2013)Google Scholar
  21. 21.
    Chan, S.M.: Just a pebble game. Tech. Rep. TR13-042, Electronic Colloquium on Computational Complexity (ECCC), 41 pages (March 2013), http://eccc.hpi-web.de/report/2013/042/
  22. 22.
    Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th ACM Symposium on Theory of Computation, pp. 174–183 (1996)Google Scholar
  23. 23.
    Esparza, J., Luttenberger, M., Schlund, M.: A brief history of Strahler numbers. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 1–13. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Esteban, J.L., Torán, J.: Space bounds for resolution. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 551–560. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Esteban, J.L., Torán, J.: Space bounds for resolution. Information and Computation 171(1), 84–97 (2001)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Esteban, J.L., Torán, J.: A combinatorial characterization of treelike resolution space. Information Processing Letters 87(6), 295–300 (2003)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Groote, J.F., Warners, J.P.: The popositional formula checker HeerHugo. Tech. Rep. SEN-R9905, Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands (January 1999)Google Scholar
  28. 28.
    Groote, J.F., Warners, J.P.: The propositional formula checker HeerHugo. Journal of Automated Reasoning 24(1-2), 101–125 (2000)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation completeness. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 220–232. Springer, Heidelberg (2013)Google Scholar
  30. 30.
    Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. Tech. Rep. arXiv:1309.3060v4 [cs.CC], arXiv (December 2013)Google Scholar
  31. 31.
    Gwynne, M., Kullmann, O.: Trading inference effort versus size in CNF knowledge compilation. Tech. Rep. arXiv:1310.5746v2 [cs.CC], arXiv (November 2013)Google Scholar
  32. 32.
    Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR via nested input resolution. Journal of Automated Reasoning 52(1), 31–65 (2014)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 409–420. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  34. 34.
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. Journal of Automated Reasoning 49(4), 583–619 (2012)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Järvisalo, M., Matsliah, A., Nordström, J., Živný, S.: Relating proof complexity measures and practical hardness of SAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 316–331. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Kleine Büning, H.: On generalized Horn formulas and k-resolution. Theoretical Computer Science 116, 405–413 (1993)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A., Heule, M.J., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 11, pp. 339–401. IOS Press (February 2009)Google Scholar
  40. 40.
    Kleine Büning, H., Lettmann, T.: Aussagenlogik: Deduktion und Algorithmen. Leitfäden und Monographen der Informatik, B.G. Teubner Stuttgart (1994)Google Scholar
  41. 41.
    Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press (1999)Google Scholar
  42. 42.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes of CNF’s based on short tree-like resolution proofs. Tech. Rep. TR99-041, Electronic Colloquium on Computational Complexity (ECCC) (October 1999), http://eccc.hpi-web.de/report/1999/041/
  44. 44.
    Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science 223(1-2), 1–72 (1999)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (October 1999)Google Scholar
  46. 46.
    Kullmann, O.: An improved version of width restricted resolution. In: Electronical Proceedings of Sixth International Symposium on Artificial Intelligence and Mathematics, 11 pages (January 2000), http://rutcor.rutgers.edu/~amai/aimath00/AcceptedCont.htm
  47. 47.
    Kullmann, O.: Upper and lower bounds on the complexity of generalised resolution and generalised constraint satisfaction problems. Annals of Mathematics and Artificial Intelligence 40(3-4), 303–352 (2004)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Kullmann, O.: Constraint satisfaction problems in clausal form I: Autarkies and deficiency. Fundamenta Informaticae 109(1), 27–81 (2011)MATHMathSciNetGoogle Scholar
  49. 49.
    Nordström, J.: Pebble games, proof complexity, and time-space trade-offs. Logical Methods in Computer Science 9(3), 1–63 (2013)CrossRefGoogle Scholar
  50. 50.
    Nordström, J., Håstad, J.: Towards an optimal separation of space and length in resolution. Theory of Computing 9(14), 471–557 (2013)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Pudlák, P.: Proofs as games. American Math. Monthly, 541–550 (2000)Google Scholar
  52. 52.
    Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for k-SAT (preliminary version). In: SODA, pp. 128–136. ACM/SIAM (2000)Google Scholar
  53. 53.
    Schlipf, J.S., Annexstein, F.S., Franco, J.V., Swaminathan, R.: On finding solutions for extended Horn formulas. Information Processing Letters 54, 133–137 (1995)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Torán, J.: Lower bounds for space in resolution. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 362–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  55. 55.
    Torán, J.: Space and width in propositional resolution (Column: Computational Complexity). Bulletin of the European Association of Theoretical Computer Science (EATCS) 83, 86–104 (2004)MATHGoogle Scholar
  56. 56.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Seminars in Mathematics, vol. 8. V.A. Steklov Mathematical Institute, Leningrad (1968), English translation: Slisenko, A.O. (ed.) Studies in mathematics and mathematical logic, Part II, pp. 115–125 (1970)Google Scholar
  57. 57.
    Urquhart, A.: The depth of resolution proofs. Studia Logica 99, 349–364 (2011)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    del Val, A.: Tractable databases: How to make propositional unit resolution complete through compilation. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR 1994), pp. 551–561 (1994)Google Scholar
  59. 59.
    Viennot, X.G.: Trees everywhere. In: Arnold, A. (ed.) CAAP 1990. LNCS, vol. 431, pp. 18–41. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Oliver Kullmann
    • 2
  1. 1.School of ComputingUniversity of LeedsUK
  2. 2.Computer Science DepartmentSwansea UniversityUK

Personalised recommendations