Advertisement

The Energy Demand of ICT: A Historical Perspective and Current Methodological Challenges

  • Bernard AebischerEmail author
  • Lorenz M. Hilty
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 310)

Abstract

This chapter provides an overview of energy demand issues in the field of ICT with a focus on the history of measuring, modelling and regulating ICT electricity consumption and the resulting methodological challenges. While the energy efficiency of ICT hardware has been dramatically improving and will continue to improve for some decades, the overall energy used for ICT is still increasing. The growing demand for ICT devices and services outpaces the efficiency gains of individual devices. Worldwide per capita ICT electricity consumption exceeded 100 kWh/year in 2007 (a value which roughly doubles if entertainment equipment is included) and is further increasing. Methodological challenges include issues of data collection and modelling ICT devices and services, assessing the entire life cycle of ICT devices and infrastructures, accounting for embedded ICT, and assessing the effect of software on ICT energy consumption.

Keywords

ICT energy consumption ICT life cycle Energy policy Regulation Standby power Energy conversion Green ICT Green software 

References

  1. 1.
    Koomey, J.G., Berard, S., Sanchez, M., Wong, H.: Implications of historical trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput. 33(3), 46–54 (2011). doi: 10.1109/MAHC.2010.28 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aebischer, B.: ICT and energy. Paper presented presentation at ICT for a global sustainable future, symposium Paradisio foundation and Club of Rome EU chapter at KVAB, Palace of Academies, Brussels, 15 Dec 2011Google Scholar
  3. 3.
    Koomey, J.: Growth in Data Center Electricity Use 2005 to 2010. Analytics Press, Oakland (2011)Google Scholar
  4. 4.
    Koomey, G., Matthews, S.M., Williams, E.: Smart everything: will intelligent systems reduce resource use? Annu. Rev. Environ. Resour. 38, 311–343 (2013)Google Scholar
  5. 5.
    Kaeslin, H.: Semiconductor technology and the energy efficiency of ICT. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 105–111. Springer, Switzerland (2015)Google Scholar
  6. 6.
    Environmental Protection Agency (EPA): Report to Congress on Server and Data Center Energy Efficiency. Energy Star Program, Washington. www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf (2007). Accessed 30 April 2014
  7. 7.
    EC: Technology-scalable datacenters. Report from the Workshop on Next-Generation Datacenters held in June 2011 in Brussels. http://cordis.europa.eu/fp7/ict/computing/documents/nextgen-dc-final.pdf. Accessed Oct 2011
  8. 8.
    Ohta, T.: Energy Problems in an Information Intensive Age. NHK Books, Tokyo (1983)Google Scholar
  9. 9.
    Uekusa, Y.: Information-intensive society and energy problems. Report (1988)Google Scholar
  10. 10.
    Walker, W.: Information technology and the use of energy. Energy Policy 13, 458–476 (1985)Google Scholar
  11. 11.
    Walker, W.: Information technology and energy supply. Energy Policy 14(6), 466–488 (1986)CrossRefGoogle Scholar
  12. 12.
    Aebischer, B., Pain, D., Giovannini, B., Kanala, R.: Perspectives de la demande d’énergie en Suisse, 1985–2025. Série de publications du GESE No 18. Office fédéral de l’énergie (1988)Google Scholar
  13. 13.
    Lutz, Ch., Spreng, D., Fischer, H.R., Itin, P., Graf, H.G.: Neue gesellschaftliche Prioritäten und Energiepolitik. Materialien zu zwei Szenarien des qualitativen Wachstums und ihren energetischen Implikationen. Série de publications du GESE No 15. Office fédéral de l’énergie, Bern (1988)Google Scholar
  14. 14.
    Spreng, D., Hediger, W.: Energiebedarf der Informationsgesellschaft. Verlag der Fachvereine, Zürich (1987)Google Scholar
  15. 15.
    Baer, W., Hassell, S., Vollaard, B.: Energy Requirements for a Digital Society. Rand Corporation. http://www.rand.org/pubs/monograph_reports/MR1617.html (2002). Accessed 17 May 2014
  16. 16.
    Laitner, J.A.: Information technology and U.S. energy consumption: energy hog, productivity tool, or both? J. Ind. Ecol. 2(6), 13–24 (2003). doi: 10.1162/108819802763471753 Google Scholar
  17. 17.
    Laitner, J.A., Poland Knight, C., McKinney, V.L., Ehrhardt-Martinez, K.: Semiconductor technologies: the potential to revolutionize U.S. energy productivity. ACEEE-Report Number E094, Washington. http://www.semiconductors.org/clientuploads/ACEEE_Report_2009.pdf (2009). Accessed 17 May 2014
  18. 18.
    Laitner, J.A.: The energy efficiency benefits and the economic imperative of ICT-enabled systems. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 37–48. Springer, Switzerland (2015)Google Scholar
  19. 19.
    GeSI: SMART 2020: Enabling the low carbon economy in the information age. http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf (2008). Accessed 17 May 2014
  20. 20.
    GeSI: GeSI SMARTer 2020: The role of ICT in driving a sustainable future. http://gesi.org/SMARTer2020 (2012). Accessed 17 May 2014
  21. 21.
    Rogers, E.A., Elliott, R.N., Kwatra, S., Trombley, D., Nadadur, V.: Intelligent efficiency: opportunities, barriers, and solutions. Report Number E13J. ACEEE, Washington. http://aceee.org/research-report/e13j (2013). Accessed 23 Apr 2014
  22. 22.
    Spreng, D.: Possibility for substitution between energy, time and information. Energy Policy 21(1), 13–23 (1993)CrossRefGoogle Scholar
  23. 23.
    Spreng, D.: Does IT have boundless influence on energy consumption? In: Hilty, L.M., Gilgen, P.W. (eds.) Sustainability in the Information Society: 15th International Symposium Informatics for Environmental Protection, Zürich, pp. 81–90. Metropolis, Marburg (2001)Google Scholar
  24. 24.
    Spreng, D.: The interdependency of energy, information and growth. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 425–434. Springer, Switzerland (2015)Google Scholar
  25. 25.
    Höjer, M., Wangel, J.: Smart sustainable cities: definition and challenges. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 333–349. Springer, Switzerland (2015)Google Scholar
  26. 26.
    Sonnenschein, M., Hinrichs, C., Niesse, A., Vogel, U.: Supporting renewable power supply through distributed coordination of energy resources. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 387–404. Springer, Switzerland (2015)Google Scholar
  27. 27.
    Katzeff, C., Wangel, J.: Social practices, households, and design in the smart grid. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 351–365. Springer, Switzerland (2015)Google Scholar
  28. 28.
    Huber, M.Z., Hilty, L.M.: Gamification and sustainable consumption: overcoming the limitations of persuasive technologies. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 367–385. Springer, Switzerland (2015)Google Scholar
  29. 29.
    Maranghino, B., Huber, M.Z., Oertle, D., Chesney, M., Hilty, L.M.: An information system supporting cap and trade in organizations. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 285–300. Springer, Switzerland (2015)Google Scholar
  30. 30.
    Gossart, C.: Rebound effects and ICT: a review of the literature. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 435–448. Springer, Switzerland (2015)Google Scholar
  31. 31.
    Coroama, V., Hilty, L.M.: Energy consumed vs. energy saved by ICT—A closer look. In: Wohlgemuth, V., Page, B., Voigt, K. (eds.) Environmental Informatics and Industrial Environmental Protection: Concepts, Methods and Tools, 23rd International Conference on Informatics for Environmental Protection, Berlin, pp. 353–361. Shaker, Aachen (2009)Google Scholar
  32. 32.
    Hilty, L.M., Aebischer, B., Rizzoli, A.E.: Assessing the sustainability of smart solutions (Editorial). Environ. Model. Softw. 56, 1–5 (2014). doi: 10.1016/j.envsoft.2014.04.001 CrossRefGoogle Scholar
  33. 33.
    Squitieri, R., Yu, O., Roach, C.: The coming boom in computer loads. Public utilities fortnightly 118(13). http://works.bepress.com/cgi/viewcontent.cgi?article=1009&context=oliver_yu (1986). Accessed 17 May 2014
  34. 34.
    Norford, L.K., Rabl, A., Harris, J., Roturier, J.: The sum of megabytes equals gigawatts: energy consumption and efficiency of office PC’s and related equipment. In: Proceedings of the 1988 ACEEE Summer Study on Energy Efficiency in Buildings, Asilomar, pp. 3.181–196 http://aceee.org/files/proceedings/1988/data/papers/1988_V3_018.pdf (1988). Accessed 17 May 2014
  35. 35.
    Norford, L., Rabl, A., Harris, J., Roturier, J.: Electronic office equipment: the impact of market trends and technology on end-use demand for electricity. In: Johansson, T.B., Bodlund, B., Williams, R.H. (eds.): Electricity: Efficient End-Use and New Generation Technologies, and Their Planning Implications, pp. 427–460. Lund University Press, Sweden (1989)Google Scholar
  36. 36.
    Piette, M.A., Eto, J.H., Harris, J.P.: Office Equipment Energy Use and Trends. Lawrence Berkeley Laboratory, University of California. LBL-31308, UC-350. http://eetd.lbl.gov/sites/all/files/lbnl-31308.pdf (1991). Accessed 17 May 2014
  37. 37.
    Meier, A., Rainer, A., Greenberg, S.: Miscellaneous electrical energy use in homes. energy 17(5), 509–518. http://akmeier.lbl.gov/pdf/meier-rainer-misc-e-use.pdf (1992). Accessed 17 May 2014
  38. 38.
    Sanchez, M.C., Koomey, J.G., Moezzi, M.M., Meier, A.K., Huber, W.: Miscellaneous electricity use in the U.S. residential sector. LBNL-40295. http://eetd.lbl.gov/sites/all/files/lbnl-40295.pdf (1998). Accessed 17 May 2014
  39. 39.
    Roth, K.W., Ponoum, R., Goldstein, F.: U.S. Residential information technology energy consumption in 2005 and 2010. Report to U.S. Department of Energy by TIAX LLC, Cambridge. http://www.biblioite.ethz.ch/downloads/residential_information_technology_energy_consumption_2006.pdf (2006). Accessed 17 May 2014
  40. 40.
    IT and Energy Library. http://www.biblioite.ethz.ch (2014). Accessed 17 May 2014
  41. 41.
    Aebischer, B., Roturier, J.: Infrastructures de la Société de l’information: un gigantesque défi énergétique. In: Hollmuller, P., Lachal, B., Romerio, F., Weber, W. (eds.) Infrastructures et énergie. Energie, Environnement et Société, pp. 183–203. CUEPE, Université de Genève, Genève (2007)Google Scholar
  42. 42.
    Aebischer, B., Roturier, J.: Électricité et Internet: le paradigme de l’iceberg. Bulletin de la S.F.P. 154, 25–27 (2006). doi: 10.1051/refdp/200615404
  43. 43.
    Aebischer, B.: Kompetenzzentrum Energie und Informationstechnik 2009–2011. Schlussbericht. CEPE (Centre for Energy Policy and Economics), ETH Zürich. http://www.cepe.ethz.ch/publications/Aebischer_SB_2009-2011_Kompetenzzentrum_JB2011.pdf (2011). Accessed 17 May 2014
  44. 44.
    Molinder, O.: One Watt after one hour in one year. Nutek, Department of Energy Efficiency, Stockholm (1993)Google Scholar
  45. 45.
    Aebischer, B., Huser, A.: Energieeffizienz von Computer-Netzgeräten. Bundesamt für Energie, Bern. http://www.cepe.ethz.ch/publications/Aebischer_sb_power_supply_full.pdf (2002). Accessed 17 May 2014
  46. 46.
    Aebischer, B., Huser, A.: Energy efficiency of computer power supplies. In: Proceedings of the 3rd International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL ‘03), Torino/Italy, 1–3 Oct 2003. http://www.cepe.ethz.ch/publications/Aebischer_28_formated.pdf (2003). Accessed 17 May 2014
  47. 47.
    Calwell, C., Reeder, T.: Power supplies: a hidden opportunity for energy savings. NRDC Report. San Francisco (2002)Google Scholar
  48. 48.
    Roturier, J. (ed.): Energy-Efficient Office Technologies in Europe. Rapport final du Groupe de Travail OT3E. Université Bordeaux (1994)Google Scholar
  49. 49.
    Aebischer, B., Spreng, D.: Computer als Stromverbraucher. Schweizer Ingenieur und Architekt 50, 1459–1463 (1990). doi: 10.5169/seals-77585 Google Scholar
  50. 50.
    Aebischer, B., Spreng, D.: Entwicklung des Elektrizitätsverbrauchs im Dienstleistungssektor einer grösseren Stadt. Bundesamt für Energiewirtschaft, EDMZ No. 805.571d (1994)Google Scholar
  51. 51.
    Künzler, B.: Elektrizitätsverbrauch und EDV-Einsatz in einer Grossbank. Semesterarbeit, ETH Zürich (1989)Google Scholar
  52. 52.
    Haas, J., Froedge, J.: Usage and Public Reporting Guidelines for the Green Grid’s Infrastructure Metrics (PUE/DCIE). The Green Grid. http://www.thegreengrid.org/~/media/WhitePapers/White%20Paper%2022%20-%20PUE%20DCiE%20Usage%20Guidelines_final.ashx (2009). Accessed 17 May 2014
  53. 53.
    Task Force: Recommendations for Measuring and Reporting Overall Data Center Efficiency. Version 1—Measuring PUE at Dedicated Data Centers. http://www.thegreengrid.org/~/media/WhitePapers/RecommendationsforMeasuringandReportingOverallDataCenterEfficiency2010-07-15.ashx?lang=en (2010). Accessed 17 May 2014
  54. 54.
    Task Force: Recommendations for Measuring and Reporting Overall Data Center Efficiency. Version 2—Measuring PUE for Data Centers. http://www.thegreengrid.org/~/media/WhitePapers/Data%20Center%20Metrics%20Task%20Force%20Recommendations%20V2%205-17-2011.pdf?lang=en (2011). Accessed 17 May 2014
  55. 55.
    Aebischer, B., Frischknecht, R., Genoud, C., Huser, A., Varone, F.: Energy- and eco-efficiency of data centres. A study commissioned by DIAE/ScanE of the Canton of Geneva. http://www.biblioite.ethz.ch/downloads/data_centres_final_report_05012003.pdf (2003). Accessed 14 May 2014
  56. 56.
    Eubank, H., Swisher, J., Burns, C., Seal, J., Emerson, B.: Design recommendations for high-performance data centers. Report of the Integrated Design Charrette, 2–5 Feb 2003. Rocky Mountain Institute, Snowmass. http://hightech.lbl.gov/dctraining/docs/hpdc-72.pdf (2003). Accessed 17 May 2014
  57. 57.
    Aebischer, B.: Back to the future—waves of rising energy use in data centers. EETD Seminars, LBNL, Berkeley. http://www.cepe.ethz.ch/publications/Aebischer_LBNL_20-4-09.pdf (2009). Accessed 17 May 2014
  58. 58.
    The Green Grid. http://www.thegreengrid.org (2014). Accessed 17 May 2014
  59. 59.
    Institute for Energy and Transport (IET): European code of conduct. http://iet.jrc.ec.europa.eu/energyefficiency/ict-codes-conduct/data-centres-energy-efficiency (2014). Accessed 17 May 2014
  60. 60.
    CRC: Energy efficiency scheme in UK. http://www.computerweekly.com/feature/Why-the-Carbon-Reduction-Commitment-is-bad-for-data-centres (n.d.). Accessed 17 May 2014
  61. 61.
    Schomaker, G., Janacek, S., Schlitt, D.: The energy demand of data centers. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 113–124. Springer, Switzerland (2015)Google Scholar
  62. 62.
    Hintemann, R.: Consolidation, colocation, virtualization, and cloud computing: the impact of the changing structure of data centers on total electricity demand. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 125–136. Springer, Switzerland (2015)Google Scholar
  63. 63.
    Coroama, V.C., Schien, D., Preist, C., Hilty, L.M.: The energy intensity of the Internet: home and access networks. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 137–155. Springer, Switzerland (2015)Google Scholar
  64. 64.
    Schien, D., Coroama, V.C., Hilty, L.M., Preist, C.: The energy intensity of the Internet: edge and core networks. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 157–170. Springer, Switzerland (2015)Google Scholar
  65. 65.
    Varone, F., Aebischer, B.: Energy efficiency: the challenges of policy design. Energy Policy 29(8), 615–629 (2001)CrossRefGoogle Scholar
  66. 66.
    Harris, J., Aebischer, B., Glickman, J., Magnin, G., Meier, A., Viegand, J.: Public sector leadership: Transforming the market for efficient products and services. In: Proceedings, ECEE Summer Study, Madelieu. http://www.pepsonline.org/publications/Public%20Sector%20Leadership.pdf (2005). Accessed 17 May 2014
  67. 67.
    Dandridge, C. B., Aebischer, B., Molinder, O., Roturier, J.: Trends in energy efficiency in office technology: Case studies from Europe and the United States. In: Ling, R., Wilhite, H. (eds.) Proceedings ECEEE-1993 Summer Study: The Energy Efficiency Challenge for Europe, Oslo. http://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/1993/Panel_2/p2_6/paper (1993). Accessed 17 May 2014
  68. 68.
    Dandridge, C.B.: Energy efficiency in office technology, Master Thesis, MIT http://dspace.mit.edu/bitstream/handle/1721.1/12261/30770619.pdf?sequence=1 (1994). Accessed 17 May 2014
  69. 69.
    International Energy Agency: Things that go blip in the night. standby power and how to limit it. http://people.trentu.ca/rloney/files/blipinthenight01.pdf (2001). Accessed 17 May 2014
  70. 70.
    Bertoldi, P., Aebischer, B., Edlington, C., Hershberg, C., Lebot, B., Lin, J., Marker, T., Nakagami, H., Shibata, Y., Siderius, H.P., Webber, C.: Standby power use: how big is the problem? What policies and technical solutions can address it? In: Proceedings of the 2002 ACEEE Summer Study on Energy Efficiency in Buildings, Washington. http://escholarship.org/uc/item/6xm6k7wg#page-19 (2002). Accessed 17 May 2014
  71. 71.
    EPA: Energy star products program. Strategic vision and guiding principles. http://www.energystar.gov/ia/partners/prod_development/downloads/guiding_principles_2012.pdf (2012). Accessed 17 May 2014
  72. 72.
    EPA: Energy star product retrospective: computers and monitors. http://www.energystar.gov/ia/products/downloads/CompMonitors_Highlights.pdf (2012). Accessed 17 May 2014
  73. 73.
    EPA: Energy star products. 20 years of helping America save money and protect the environment. http://www.energystar.gov/ia/products/downloads/ES_Anniv_Book_030712_508compliant_v2.pdf?ebc6-0b63 (2012). Accessed 17 May 2014
  74. 74.
    Ellis, M.: Gadgets and Gigawatts. Policies for Energy Efficient Electronics. IEA/OECD, Paris (2009)Google Scholar
  75. 75.
    International Energy Agency: Beyond 1-Watt—towards energy efficiency in the digital age. IEA/4E/SEAD Network Standby Workshop, Paris, pp. 16–17 Sept 2013. http://www.iea.org/workshop/iea4eseadnetworkstandbyworkshop.html (2013). Accessed 17 May 2014
  76. 76.
    World Summit on the Information Society (WSIS). http://www.itu.int/wsis/index.html (2014). Accessed 17 May 2014
  77. 77.
    Roth, K.W., Goldstein, F., Kleinman, J.: Energy consumption by office and telecommunications equipment in commercial buildings. Volume I: Energy consumption baseline. In: Arthur, D. (ed.) Report for Office of Building Technology State and Community Programs, Little, Inc., Cambridge (2002) http://www.biblioite.ethz.ch/downloads/Roth_ADL_1.pdf. Accessed 17 May 2014
  78. 78.
    Roth, K.W., McKenney, K.: Energy consumption by consumer electronics in U.S. residences. Final Report to Consumer Electronics Association (CEA). Cambridge. http://www.ce.org/CorporateSite/media/Government-Media/Green/Energy-Consumption-by-Consumer-Electronics-in-U-S-Residences.pdf (2007). Accessed 17 May 2014
  79. 79.
  80. 80.
    Cremer, C., Eichhammer, W., Friedewald, M., Georgieff, P., Rieth-Hoerst, S., Schlomann, B., Zoche, P., Aebischer, B., Huser, A.: Der Einfluss moderner Gerätegenerationen der Informations—und Kommunikationstechnik auf den Energieverbrauch in Deutschland bis zum Jahr 2010—Möglichkeiten zur Erhöhung der Energieeffizienz und der Energieeinsparung in diesen Bereichen, Studie von FhG-ISI und CEPE im Auftrag des Bundesministeriums für Wirtschaft und Arbeit, Karlsruhe/Zürich http://www.cepe.ethz.ch/publications/ISI_CEPE_IuK_Abschlussbericht.pdf (2003). Accessed 21 May 2014
  81. 81.
    Stobbe, L., Nissen, N.F., Proske, M., Middendorf, A., Schlomann, B., Friedewald, M., Georgieff, P., Leimbach, T.: Abschätzung des Energiebedarfs der weiteren Entwicklung der Informationsgesellschaft. Abschlussbericht an das Bundesministerium für Wirtschaft und Technologie. Basel/Karlsruhe. http://www.bmwi.de/Dateien/BMWi/PDF/abschaetzung-des-energiebedarfs-der-weiteren-entwicklung-der-informationsgesellschaft (2009). Accessed 17 May 2014
  82. 82.
    Koomey, J.G., Cramer, M., Piette, M.A., Eto, J.H.: Efficiency improvements in U.S. office equipment: expected policy impacts and uncertainties. LBL Report: LBL-37383, http://enduse.lbl.gov/Info/LBNL-37383.pdf (1995). Accessed 22 May 2014
  83. 83.
    Kawamoto, K., Koomey, J., Nordman, B., Brown, R., Piette, M.A., Ting, M., Meier, A.: Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices, Lawrence Berkeley National Laboratory, Berkeley (2001)Google Scholar
  84. 84.
    EIA: Energy information administration’s 2001 annual energy outlook. Table A5, “Commercial Sector Key Indicators and Consumption” (2001)Google Scholar
  85. 85.
    ADL: Energy consumption characteristics of commercial building HVAC systems. Volume 1: Chillers, refrigerant compressors, and heating systems. In: Arthur, D. (ed.) Final Report Little, Inc. to the U.S. Department of Energy, Office of Building Technology, State and Community Programs (2001)Google Scholar
  86. 86.
    Malmodin, J., Moberg, A., Lundén, D., Finnveden, G., Lövehagen, N.: Greenhouse gas emissions and operational electricity use in the ICT and entertainment and media sectors. J. Ind. Ecol. 14(5), 770–790 (2010). doi: 10.1111/j.1530-9290.2010.00278.x CrossRefGoogle Scholar
  87. 87.
    Lannoo, B., Lambert, S., Van Heddeghem, W., Pickavet, M., Kuipers, F., Koutitas, G., Niavis, H., Satsiou, A., Beck, M.T., Fischer, A., de Meer, H., Alcock, P., Papaioannou, T., Viet, N.H., Plagemann, T., Aracil, J.: Overview of ICT energy consumption. http://www.internet-science.eu/sites/internet-science.eu/files/biblio/EINS_D8%201_final.pdf (2013). Accessed 30 Apr 2014
  88. 88.
    Coroama, V.C., Moberg, A., Hilty, L.M.: Dematerialization through electronic media? In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 405–421. Springer, Switzerland (2015)Google Scholar
  89. 89.
    Hilty, L.M., Ruddy, T., Schulthess, D.: Resource Intensity and Dematerialization Potential of Information Society Technologies. University of Applied Sciences Northwestern Switzerland, Olten (2000)Google Scholar
  90. 90.
    Grote, A.: Grüne Rechnung. Das Produkt Computer in der Okobilanz. In: c’t, Computer und Technik 12, 82–98 (1994)Google Scholar
  91. 91.
    Grote, A.: Ermittlungen. Stoffdatenbank der TU Munchen konkretisiert PC-Okobilanz. c’t, Computer und Technik 8, 108 (1995)Google Scholar
  92. 92.
    Microelectronics and Computer Technology Corporation (MCC): Environmental consciousness: a strategic competitiveness issue for the electronics and computer industry. Microelectronics and Computer Technology Corporation (MCC), Austin (1993)Google Scholar
  93. 93.
    Hischier, R., Coroama, V.C., Schien, D., Ahmadi Achachlouei, M.: Grey energy and environmental impacts of ICT hardware. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 171–189. Springer, Switzerland (2015)Google Scholar
  94. 94.
    Hischier, R., Wäger, P.A.: The transition from desktop computers to tablets: a model for increasing resource efficiency? In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 257–268. Springer, Switzerland (2015)Google Scholar
  95. 95.
    Takahashi, K.I., Nakamura, J., Maeda, T., Origuchi, T., Kunioka, T., Harada, H., Miyamoto, S., Fujimoto, J.: Environmental effects of information telecommunication networks in Japan. In: IEEE International Symposium on Electronics and the Environment (2003)Google Scholar
  96. 96.
    Malmodin, J., Oliv, L., Bergmark, P.: Life cycle assessment of third generation (3G) wireless telecommunication systems at Ericsson. In: Proceedings EcoDesign, Stockholm (2001)Google Scholar
  97. 97.
    Faist-Emmenegger, M., Frischknecht, R., Stutz, M., Guggisberg, M., Witschi, R., Otto, T.: Life cycle assessment of the mobile communication system UMTS: towards eco-efficient systems. Int. J. LCA 4(11), 265–276 (2006)CrossRefGoogle Scholar
  98. 98.
    Scharnhorst, W., Althaus, H.-J., Classen, M., Jolliet, O., Hilty, L.M.: The end-of-life treatment of second generation mobile phone networks: strategies to reduce the environmental impact. Environ. Impact Assess. Rev. 25(5), 540–566 (2005). doi: 10.1016/j.eiar.2005.04.005 CrossRefGoogle Scholar
  99. 99.
    Scharnhorst, W., Althaus, H.J., Hilty, L.M., Jolliet, O.: Environmental assessment of end-of-life treatment options for a GSM 900 antenna rack. Int. J. Life Cycle Assess. 6(11), 425–436 (2006). doi: 10.1065/lca2005.08.216 CrossRefGoogle Scholar
  100. 100.
    Scharnhorst, W., Hilty, L.M., Jolliet, O.: Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks. Environ. Int. 5(32), 656–675 (2006). doi: 10.1016/j.envint.2006.03.001
  101. 101.
    Reichart, I., Hischier, R.: Environmental impact of electronic and print media: television, Internet newspaper and printed daily newspaper. In: Hilty, L.M., Gilgen, P.W. (eds.) Sustainability in the Information Society. 15th International Symposium Informatics for Environmental Protection, pp. 91–98. Metropolis, Marburg (2001)Google Scholar
  102. 102.
    Hischier, R., Hilty, L.M.: Environmental impacts of an international conference. Environ. Impact Assess. Rev. 22(5), 543–557 (2002). doi: 10.1016/S0195-9255(02)00027-6 CrossRefGoogle Scholar
  103. 103.
    Hilty, L.M., Köhler, A., von Schéele, F., Zah, R., Ruddy, T.: Rebound effects of progress in information technology. Poiesis Praxis Int J. Technol. Assess. Ethics Sci. 1(4), 19–38 (2006). doi: 10.1007/s10202-005-0011-2
  104. 104.
    Böni, H., Schluep, M., Widmer, R.: Recycling of ICT equipment in industrialized and developing countries. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 223–241. Springer, Switzerland (2015)Google Scholar
  105. 105.
    Hischier, R., Wäger, P.A., Gauglhofer, J.: Does WEEE recycling make sense from an environmental perspective? The environmental impacts of the swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE). Environ. Impact Assess. Rev. 25, 525–539 (2005)CrossRefGoogle Scholar
  106. 106.
    Hilty, L.M., Behrendt, S., Binswanger, M., Bruinink, A., Erdmann, L., Froehlich, J., Koehler, A., Kuster, N., Som, C., Wuertenberger, F.: The precautionary principle in the information society—effects of pervasive computing on health and environment. Swiss Center for Technology Assessment (TA-SWISS), Bern and Scientific Technology Options Assessment at the European Parliament (2005)Google Scholar
  107. 107.
    Oertel, B., Wölk, M., Hilty, L.M., Köhler, A.: Security Aspects and Prospective Applications of RFID Systems. Bundesamt für Sicherheit in der Informationstechnik, Bonn (2005)Google Scholar
  108. 108.
    Hilty, L.M.: Electronic waste—an emerging risk? Environ. Impact Assess. Rev. 25(5), 431–435 (2005). doi: 10.1016/j.eiar.2005.04.002 CrossRefGoogle Scholar
  109. 109.
    Kräuchi, P., Wäger, P., Eugster, M., Grossmann, G., Hilty, L.M.: End-of-life Impacts of pervasive computing. IEEE Technol. Soc. Mag. 24(1), 45–53 (2005)CrossRefGoogle Scholar
  110. 110.
    Wäger, P.A., Eugster, M., Hilty, L.M., Som, C.: Smart labels in municipal solid waste—a case for the precautionary principle? Environ. Impact Assess. Rev. 25(5), 567–586 (2005). doi: 10.1016/j.eiar.2005.04.009 CrossRefGoogle Scholar
  111. 111.
    Köhler, A.R., Hilty, L.M., Bakker, C.: Prospective impacts of electronic textiles on recycling and disposal. J. Ind. Ecol. 15(4), 496–511 (2011). doi: 10.1111/j.1530-9290.2011.00358.x CrossRefGoogle Scholar
  112. 112.
    Wäger, P.A., Hischier, R., Widmer, R.: The material basis of ICT. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 209–221. Springer, Switzerland (2015)Google Scholar
  113. 113.
    Hilty, L.M., Köhler, A., von Schéele, F., Zah, R.: Working slower with more powerful computers. ERCIM News 62, 58–59 (2005)Google Scholar
  114. 114.
    Hilty, L.M., Lohmann, W., Behrendt, S., Evers-Wölk, M., Fichter, K., Hintemann, R.: Grüne Software. Schlussbericht zum Vorhaben: Ermittlung und Erschließung von Umweltschutzpotenzialen der Informations- und Kommunikationstechnik (Green IT). Umweltbundesamt, Berlin (2014, in press)Google Scholar
  115. 115.
    Rejeski, D.: Anticipations. In: Pamlin, D. (ed.) Sustainability at the speed of light. WWF Sweden. http://assets.panda.org/downloads/wwf_ic_1.pdf (2002). Accessed 17 May 2014
  116. 116.
    Broy, M., Pree, W.: Ein Wegweiser für Forschung und Lehre im Software-Engineering eingebetteter Systeme. Informatik-Spektrum 18, 3–7 (2003)CrossRefGoogle Scholar
  117. 117.
    Aebischer, B.: ICT and Energy: Some Methodological Issues. ERCIM News 79, 12–13. http://ercim-news.ercim.eu/en79/special/ict-and-energy-some-methodological-issues (2009). Accessed 17 May 2014
  118. 118.
    Hilbert, M., López, P.: The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 332(60) (2011). doi: 10.1126/science.1200970
  119. 119.
    Hilbert, M., López, P.: Supporting Online Material for: the world’s technological capacity to store, communicate, and compute information. Sci. Express (2011). doi: 10.1126/science.1200970 zbMATHGoogle Scholar
  120. 120.
    Bundesamt für Statistik: Indicators for Information Society like in Switzerland. http://www.bfs.admin.ch/bfs/portal/de/index/themen/16/04/key/approche_globale.html (2014). Accessed 17 May 2014
  121. 121.
    Mills, M.P.: The Internet Begins with Coal: a Preliminary Exploration of the Impact of the Internet on Electricity Consumption. The Greening Earth Society, Arlington (1999)Google Scholar
  122. 122.
    Mills, M.P.: The cloud begins with coal. Big data, big networks, big infrastructure, and big power. http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac (2013). Accessed 17 May 2014
  123. 123.
    Hischier, R., Ahmadi Achachlouei, M., Hilty, L.M.: Evaluating the sustainability of electronic media: strategies for life cycle inventory data collection and their implications for LCA results. Environ. Model Softw. 56, 27–36 (2014)CrossRefGoogle Scholar
  124. 124.
    Naumann, S., Kern, E., Dick, M., Johann, T.: Sustainable software engineering: process and quality models, life cycle and social aspects. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 191–205. Springer, Switzerland (2015)Google Scholar
  125. 125.
    Remy, C., Huang, E.M.: Addressing the obsolescence of end-user devices: approaches from the field of sustainable HCI. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 257–268. Springer, Switzerland (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ZurichSwitzerland
  2. 2.Department of InformaticsUniversity of ZurichZurichSwitzerland
  3. 3.Empa, Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  4. 4.Centre for Sustainable Communications CESC, KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations