Advertisement

Grey Energy and Environmental Impacts of ICT Hardware

  • Roland Hischier
  • Vlad C. Coroama
  • Daniel Schien
  • Mohammad Ahmadi Achachlouei
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 310)

Abstract

Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.

Keywords

Life cycle assessment Sustainability Grey energy Cumulative energy demand ICT hardware Information and communication technology 

References

  1. 1.
    Aebischer, B., Hilty, L.M.: The energy demand of ICT: a historical perspective and current methodological challenges. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 71–103. Springer, Switzerland (2015)Google Scholar
  2. 2.
    Schomaker, G., Janacek, S., Schlitt, D.: The energy demand of data centers. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 113–124. Springer, Switzerland (2015)Google Scholar
  3. 3.
    Coroama, V., Schien, D., Priest, C., Hilty, L.M.: The energy intensity of the Internet: home and access networks. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 137–155. Springer, Switzerland (2015)Google Scholar
  4. 4.
    Schien, D., Coroama, V., Hilty, L.M., Preist, C.: The energy intensity of the Internet: edge and core networks. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 157–170. Springer, Switzerland (2015)Google Scholar
  5. 5.
    Boustead, I., Hancock, G.F.: Handbook of Industrial Energy Analysis. Elis Hardwood Ltd, Chichester (1979)Google Scholar
  6. 6.
    VDI: VDI-Richtlinie 4600: Cumulative energy demand—Terms, definitions, methods of calculation. Beuth Publisher, Berlin, (1997)Google Scholar
  7. 7.
    Kasser, U., Pöll, M.: Ökologische Bewertung mit Hilfe der Grauen Energie. In: Schriftenreihe Umwelt No. 307. Bundesamt für Umwelt, Wald und Landschaft (BUWAL)/Swiss-EPA, Bern, (1999)Google Scholar
  8. 8.
    sia: Graue Energie von Gebäuden. In, vol. 2032. Swiss Society of Engineers and Architects (sia), Zürich, (2010)Google Scholar
  9. 9.
    Wäger, P., Hischier, R., Widmer, R.: The material basis of ICT. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 209–221. Springer, Switzerland (2015)Google Scholar
  10. 10.
    WCED: Our Common Future. In: World Commission on Environment and Development (WCED). Oxford Press, Oxford (1987)Google Scholar
  11. 11.
    Ness, B., Urbel-Piirsalu, E., Anderberg, S., Olsson, L.: Categorising tools for sustainability assessment. Ecol. Econ. 60, 498–508 (2007)CrossRefGoogle Scholar
  12. 12.
    ISO: Environmental Management—Life Cycle Assessment—Principles and Framework. In. International Standardization Organization (ISO), European Standard EN ISO 14’040, Geneva (2006)Google Scholar
  13. 13.
    Ayres, R.U.: Life cycle analysis: a critique. Resour. Conserv. Recycl. 14, 199–223 (1995)CrossRefGoogle Scholar
  14. 14.
    Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B., Pennington, D.: Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and application. Environ. Int. 30, 701–720 (2004)CrossRefGoogle Scholar
  15. 15.
    ISO: Environmental Management—Life Cycle Assessment—Requirements and Guidelines. In. International Standardisation Organisation (ISO), European Standard EN ISO 14’044, Geneva (2006)Google Scholar
  16. 16.
    Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T., Rebitzer, G.: Life cycle assessment part 2: current impact assessment practice. Environ. Int. 30, 721–739 (2004)CrossRefGoogle Scholar
  17. 17.
    Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., de Schreyver, A., Struijs, J., van Zelm, R.: ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1st edn. Report I: Characterisation. In: VROM—Ministery of Housing Spatial Planning and Environment, Den Haag (2012)Google Scholar
  18. 18.
    Guinee, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J.: Life cycle assessment—an operational guide to the ISO standards. In: Centre of Environmental Sciences (CML). Leiden University, Leiden (2001)Google Scholar
  19. 19.
    Goedkoop, M., Spriensma, R.: Eco-indicator 99. A damage orientated method for life cycle impact assessment. In: Methodology Report. Pré Consultants B. V. Amersfoort (2000)Google Scholar
  20. 20.
    Klöpffer, W.: Defense of the cumulative energy demand. Int. J. Life Cycle Assess. 2(2), 61 (1997)Google Scholar
  21. 21.
    Huijbregts, M.A.J., Rombouts, L.J.A., Hellweg, S., Frischknecht, R., Hendriks, A.J., Van de Meent, D., Ragas, A.M.J., Reijnders, L., Struijs, J.: Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ. Sci. Technol. 40(3), 641–648 (2006). doi: 10.1021/es051689g CrossRefGoogle Scholar
  22. 22.
    Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Hellweg, S., Hischier, R., Humbert, S., Margni, M., Nemecek, T., Spielmann, M.: Implementation of Life Cycle Impact Assessment Methods. Swiss Centre for Life Cycle Inventories, Dübendorf (2007)Google Scholar
  23. 23.
    Rhodes, S.P.: Applications of life cycle assessment in the electronics industry for product design and marketing claims. In: Proceedings of the IEEE International Symposium on Electronics and the Environment, pp. 101–105. Arlington (1993)Google Scholar
  24. 24.
    Hischier, R., Ahmadi Achachlouei, M., Hilty, L.M.: Evaluating the sustainability of electronic media: strategies for life cycle inventory data collection and their implications for LCA results. Environ. Model Softw. 56, 27–36 (2014)CrossRefGoogle Scholar
  25. 25.
    Arushanyan, Y., Ekener-Petersen, E., Finnveden, G.: Lessons learned—review of LCAs for ICT products and services. Comput. Ind. 65(2), 211–234 (2014) Google Scholar
  26. 26.
    Andrae, A.S.G., Andersen, O.: Life cycle assessments of consumer electronics—are they consistent? Int. J. Life Cycle Assess. 15(8), 827–836 (2010)CrossRefGoogle Scholar
  27. 27.
    Hischier, R., Classen, M., Lehmann, M., Scharnhorst, W.: Life Cycle Inventories of Electric and Electronic Equipment: Production, Use and Disposal. Swiss Centre for Life Cycle Inventories, Empa—TSL, Dübendorf (2007)Google Scholar
  28. 28.
    ecoinvent Centre: ecoinvent data v2.2. Swiss Centre for Life Cycle Inventories, Dübendorf (2010)Google Scholar
  29. 29.
    Hischier, R., Althaus, H.-J., Bauer, C., Doka, G., Frischknecht, R., Jungbluth, N., Nemecek, T., Simons, A., Stucki, M., Sutter, J., Tuchschmid, M.: In: Documentation of Changes Implemented in ecoinvent Data v2.1 and v2.2. Swiss Centre for Life Cycle Inventories, Dübendorf (2010)Google Scholar
  30. 30.
    Coroama, V., Hilty, L.M.: Assessing Internet energy intensity: a review of methods and results. Environ. Impact Assess. Rev. 45, 63–68 (2014). doi: 10.1016/j.eiar.2013.12.004 CrossRefGoogle Scholar
  31. 31.
    Coroama, V., Hilty, L.M., Heiri, E., Horn, F.: The direct energy demand of internet data flows. J. Ind. Ecol. 17, 680–688 (2013)Google Scholar
  32. 32.
    Coroama, V.C., Hilty, L.M., Birtel, M.: Effects of internet-based multiple-site conferences on greenhouse gas emissions. Telematics Inform. 4(29), 362–374 (2012)CrossRefGoogle Scholar
  33. 33.
    Müller, E., Widmer, R., Coroama, V.C., Orthlieb, A.: Material and energy flows and environmental impacts of the internet in Switzerland. J. Ind. Ecol. 17(6), 814–826 (2013). doi: 10.1111/jiec.12056 CrossRefGoogle Scholar
  34. 34.
    Lunden, D., Malmodin, J.: changes in environmental impacts over time in the fast developing ICT industry. Paper presented at the the 6th international conference on life cycle management, Gothenburg (2013)Google Scholar
  35. 35.
    ecoinvent Centre: ecoinvent data v3.01—Online Database—available at www.ecoinvent.org. ecoinvent Association, Zürich (2013)
  36. 36.
    Allan, R.A.: A history of the personal computer. In: The People and the Technology. Allan Publishing, London, Ontario (2001)Google Scholar
  37. 37.
    Park, E., del Pobil, A.P.: Technology acceptance model for the use of tablet PCs. Wireless Pers. Commun. 73, 1561–1572 (2013). doi: 10.1007/s11277-013-1266-x CrossRefGoogle Scholar
  38. 38.
    Hischier, R., Keller, M., Lisibach, R., Hilty, L.M.: Mat—an ICT application to support a more sustainable use of print products and ICT devices. In: Hilty, L.M., Aebischer, B., Andersson, G., Lohmann, W. (eds.) In: ICT4S 2013: Proceedings of the First International Conference on Information and Communication Technologies for Sustainability, pp. 223–230. ETH Zürich (2013)Google Scholar
  39. 39.
    Teehan, P., Kandlikar, M.: Sources of variation in life cycle assessments of desktop computers. J. Ind. Ecol. 16(S1), S182–S194 (2012). doi: 10.1111/j.1530-9290.2011.00431.x CrossRefGoogle Scholar
  40. 40.
    IVF: Lot 3—Personal Computers (desktops and laptops) and Computer Monitors. Final Report (Task 1–8). In: European Commission DG TREN (ed.) Preparatory studies for Eco-design Requirements of EuPs (Contract TREN/D1/40-2005/LOT3/S07.56313). vol. IVF Report 07004. IVF (Industrial Research and Development Corporation), Mölndal (2007)Google Scholar
  41. 41.
    Kahhat, R., Poduri, S., Williams, E.: Bill of Attributes (BOA) in Life Cycle Modeling of Laptop Computers: Results and Trends from Disassembly Studies. Sustainability Consortium White Paper #103. The Sustainability Consortium, Arizona State University, and University of Arkansas, Tempe and Fayetteville (2011)Google Scholar
  42. 42.
    Apple: 15’’ MacBook Pro—Environmental Report. Apple Inc., Cupertino, CA (2010)Google Scholar
  43. 43.
    Herrmann, C.: Environmental footprint of ICT equipment in manufacture, use and end-of-life. Presentation held at ECOC, Brussels (2008)Google Scholar
  44. 44.
    Lu, L.-T., Wernick, I.K., Hsiao, T.-Y., Yu, Y.-H., Yang, Y.-M., Ma, H.-W.: Balancing the life cycle impacts of notebook computers: Taiwan’s experience. Resour. Conserv. Recycl. 48(1), 13–25 (2006)CrossRefGoogle Scholar
  45. 45.
    Tekawa, M., Miyamoto, S., Inaba, A.: Life cycle assessment; an approach to environmentally friendly PCs. In: Proceedings of the IEEE International Symposium on Electronics and the Environment, pp. 125–130. San Francisco, CA (1997)Google Scholar
  46. 46.
    Ahmadi Achachlouei, M., Moberg, A., Hochschorner, E.: Life cycle assessment of a magazine - part 1: tablet edition in emerging and mature states. J. Ind. Ecol. (Accepted for publication) (2014)Google Scholar
  47. 47.
    ZyXEL: Product Data Sheet NBG4615 v2 - Wireless N300 Gigabit NetUSB Router (2012)Google Scholar
  48. 48.
    Leuenberger, M., Frischknecht, R.: Life cycle assessment of virtual mobility. In: Implemented in ecoinvent data v2.2 (2010). ESU-services Ltd., Uster (2010)Google Scholar
  49. 49.
    Schien, D.: Excel Spreadsheet Network Device Statistics. Retrieved April 06, 2014, from http://www.cs.bris.ac.uk/home/schien/models/router_power_draw_201401.xlsx (2014)
  50. 50.
    Koomey, J.G.: In: Growth in Data Center Electricity Use 2005–2010. A report by Analytics Press, completed at the request of The New York Times (2011)Google Scholar
  51. 51.
    Koomey, J.G.: Worldwide electricity used in data centers. Environ. Res. Lett. 3, 8 (2008). doi: 10.1088/1748-9326/3/3/034008 CrossRefGoogle Scholar
  52. 52.
    DCD Intelligence: Global Data Center Power 2013. http://www.dcd-intelligence.com/Products-Services/Open-Research/Global-Data-Center-Power-2013 (2014). Accessed 27 May 2014
  53. 53.
    Malmodin, J., Lundén, D., Moberg, A., Andersson, G., Nilsson, M.: Life cycle assessment of ICT: carbon footprint and operational electricity use from the operator, national, and subscriber perspective in Sweden. J. Ind. Ecol. (2014). doi: 10.1111/jiec.12145
  54. 54.
    IDC: Press Release: Worldwide Server Market Rebounds Sharply in Fourth Quarter as Demand for x86 Servers and High-end Systems Leads the Way. http://www.idc.com/getdoc.jsp?containerId=prUS23974913 (2013). Accessed 27 May 2014
  55. 55.
    Huber, A.: Eine Million Server für Microsoft im Einsatz. http://www.itmagazine.ch/Artikel/53562/Eine_Million_Server_fuer_Microsoft_im_Einsatz.html (2013). Accessed 28 March 2014
  56. 56.
    Lorenz, M.: How Many Servers Worldwide? http://www.visioncloud.eu/content.php?s=191,324 (2011). Accessed 28 March 2014
  57. 57.
    Miller, R.: Who hast the most web servers?. http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/ (2013). Accessed 28 March 2014
  58. 58.
    Nissen, N.F.: EuP preparatory study lot 6 standby and off-mode losses—task 3 consumer behaviour and local infrastructure. final report. In: Fraunhofer Institute for Reliability and Microintegration (IZM), Department Environmental Engineering, Berlin (2007)Google Scholar
  59. 59.
    Best, J.: Europe’s broadband 25 percent slower than ISPs promise. http://www.zdnet.com/europes-broadband-25-percent-slower-than-isps-promise-7000017312/ (2014). Accessed 21 Apr 2014
  60. 60.
    Baliga, J., Ayre, R., Hinton, K., Sorin, W.V., Tucker, R.S.: Energy consumption in optical IP networks. J. Lightwave Technol. 27(13), 2391–2403 (2009). doi: 10.1109/JLT.2008.2010142 CrossRefGoogle Scholar
  61. 61.
    Cisco: Cisco Global Cloud Intex: Foecast and Methodology, 2010–2015. White paper. In. Cisco Systems, Inc., San Jose (2011)Google Scholar
  62. 62.
    Gossart, C.: Rebound effects and ICT: a review of the literature. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 435–448. Springer, Switzerland (2015)Google Scholar
  63. 63.
    Hischier, R., Wäger, P.: The transition from desktop computers to tablets: a model for increasing resource efficiency? In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 243–256. Springer, Switzerland (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roland Hischier
    • 1
  • Vlad C. Coroama
    • 2
  • Daniel Schien
    • 3
  • Mohammad Ahmadi Achachlouei
    • 5
    • 4
  1. 1.Empa, Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  2. 2.Measure-IT ResearchBucharestRomania
  3. 3.Department of Computer ScienceUniversity of BristolBristolUK
  4. 4.Centre for Sustainable Communications CESC, KTH Royal Institute of TechnologyStockholmSweden
  5. 5.Division of Environmental Strategies Research FMSKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations