EPR and IR Spectroscopy of Free Radicals and Radical Ions Produced by Radiation in Solid Systems

Chapter

Abstract

EPR spectroscopy was extensively used for characterization of highly reactive paramagnetic species produced by ionizing radiation in low-temperature solids for 60 years. The present chapter outlines experimental approaches in this field and presents a review of recent development using a combination of EPR and IR spectroscopy. This approach made it possible to get a new insight in the radiation-induced chemistry of molecules in solids and to provide more detailed information on the structure and dynamics of radiation-induced radicals.

EPR spectroscopy IR spectroscopy Radiation induced radicals and radical ions Low temperature solids Matrix effects Structure and dynamics of radicals Reactions of hydrogen atoms Noble gas hydrides 

References

  1. 1.
    Hutchison CA (1949) Paramagnetic resonance absorption in crystals colored by irradiation. Phys Rev 75:1769CrossRefGoogle Scholar
  2. 2.
    Schneider EE, Day MJ, Stein G (1951) Effects of X-rays upon plastics: paramagnetic resonance. Nature 168:645–664CrossRefGoogle Scholar
  3. 3.
    Morton JR (1964) Electron spin resonance spectra of oriented radicals. Chem Rev 64:453–471CrossRefGoogle Scholar
  4. 4.
    Pshezhetskii SYa, Kotov AG, Milinchuk VK, Roginskii VAT (1974) EPR of free radicals in radiation chemistry. Wiley, NYGoogle Scholar
  5. 5.
    Shida T, Kato T (1979) ESR and optical studies on the cation-radical of pyridine in a gamma-irradiated rigid matrix at low-temperatures. Chem Phys Lett 68:106–111CrossRefGoogle Scholar
  6. 6.
    Symons MCR (1984) Radical cations in condensed phases. Chem Soc Rev 13:393–439CrossRefGoogle Scholar
  7. 7.
    Shiotani M (1987) ESR studies of radical cations in solid matrices. Magn Reson Rev 12:333–381Google Scholar
  8. 8.
    Lund A, Shiotani M (eds) (1991) Radical ionic systems. Properties in condensed phases. Kluwer, DordrechtCrossRefGoogle Scholar
  9. 9.
    Knight LB (1986) ESR investigations of molecular cation radicals in neon matrices at 4 K: generation, trapping, and ion-neutral reactions. Acc Chem Res 19:313–321CrossRefGoogle Scholar
  10. 10.
    Knight LB, Gregory BW, Cobranchi ST, Williams F, Qin X-Z (1988) High-resolution electron-spin-resonance spectroscopy and structure of the acetaldehyde radical cation (CH3CHO + ) in neon matrices at 4 K-comparison with results in freon matrices. J Am Chem Soc 110:327–342CrossRefGoogle Scholar
  11. 11.
    Knight LB, Kerr K, Villanueva M, McKinley AJ, Feller D (1992) Theoretical and neon ­matrix electron-spin-resonance studies of the methanol cation-CH3OH + , CH3OD + , CH2DOH + , and (CH3OH + )C13. J Chem Phys 97:5363–5376CrossRefGoogle Scholar
  12. 12.
    Feldman VI (1997) Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy. Acta Chem Scand 51:181–192CrossRefGoogle Scholar
  13. 13.
    Feldman VI (1999) Radiation-induced transformations of isolated organic molecules in solid rare gas matrices. Radiat Phys Chem 55:565–571CrossRefGoogle Scholar
  14. 14.
    Feldman VI, Sukhov FF, Orlov AYu (1999) An ESR study of benzene radical cation in an argon matrix: evidence for favourable stabilization of 2B1 g rather than 2B2 g state. Chem Phys Lett 300:713–718CrossRefGoogle Scholar
  15. 15.
    Feldman VI, Sukhov FF, Orlov AYu, Kadam R, Itagaki Y, Lund A (2000) Effect of matrix and substituent on the electronic structure of trapped benzene radical cations. Phys Chem Chem Phys 2:29–35CrossRefGoogle Scholar
  16. 16.
    Feldman VI, Sukhov FF, Orlov AYu, Shmakova NA (2000) Effect of matrix electronic characteristics on trapping and degradation of organic radical cations in solid rare gases: a case study of methylal radical cation. J Phys Chem A 104:3792–3799CrossRefGoogle Scholar
  17. 17.
    Feldman V, Sukhov F, Orlov A, Tyulpina I (2003) Stabilization and reactions of aliphatic ­radical cations produced by fast electron irradiation in solid argon matrices. Phys Chem Chem Phys 5:1769–1774CrossRefGoogle Scholar
  18. 18.
    Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV, Ivanchenko VK (2006) Stabilization and isomerization of radical cations generated by fast electron irradiation of unsaturated organic molecules in a solid argon matrix. Radiat Phys Chem 75:106–114CrossRefGoogle Scholar
  19. 19.
    Iwasaki M, Toriyama K, Fukaya M, Muto H, Nunome K (1985) 4 K radiolysis of linear alkanes as studied by electron-spin resonance spectroscopy-selective formation of terminal alkyl radicals in the primary process. J Phys Chem 89:5278–5284CrossRefGoogle Scholar
  20. 20.
    Feldman VI, Sukhov FF, Slovokhotova NA (1994) Selectivity of radiation-induced chemical processes in low-molecular-mass and high-molecular-mass hydrocarbons. Vysokomolek soedin B 36:519–543Google Scholar
  21. 21.
    Feldman VI (1996) Selective localization of primary radiation-chemical events in solid aliphatic hydrocarbons and related polymers as evidenced by ESR. Appl Radiat Isot 47:1497–1501CrossRefGoogle Scholar
  22. 22.
    Feldman VI (2011) Selective and long-range effects in the radiation chemistry of molecular solids and polymers. In: Stass DV, Feldman VI (eds) Selectivity, control, and fine tuning in high-energy chemistry. Research Signpost, TrivandrumGoogle Scholar
  23. 23.
    Feldman VI (2013) Organic radical cations and neutral radicals produced by radiation in low-temperature matrices. In: Lund A, Shiotani M (eds) EPR of free radicals in solids II. Trends in applications and methods (2nd edn). Springer, DordrechtGoogle Scholar
  24. 24.
    Shida T (1988) Electronic absorption spectra of radical ions. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Mel’nikov MYa, Smirnov VA (1996) Handbook of photochemistry of organic radicals. ­Begell House Inc Publishers, NYGoogle Scholar
  26. 26.
    Feldman VI, Mel’nikov MYa (2000) Matrix effects in the reactions of organic radical cations in ground and excited states in solid phase. High Energy Chem 34:236–245CrossRefGoogle Scholar
  27. 27.
    Gillbro T, Lund A (1975) High-yield of radical pairs in deuterated normal-alkane single-crystals gamma-irradiated at 4.2 K. Chem Phys Lett 34:375–377CrossRefGoogle Scholar
  28. 28.
    Gillbro T, Lund A (1976) Deposition of radiation energy in solids as visualized by distribution, structure and properties of alkyl radicals in gamma-irradiated normal-alkane ­single-crystals. Int J Radiat Phys Chem 8:625–641CrossRefGoogle Scholar
  29. 29.
    Iwasaki M, Toriyama K, Muto H, Nunome K (1976) Pairwise trapping of radicals in single-crystals of normal-decane irradiated at 1.5 and 4.2 degrees K. J Chem Phys 65:596–606CrossRefGoogle Scholar
  30. 30.
    Toriyama K, Muto H, Nunome K, Fukaya M, Iwasaki M (1981) Radiation damages of ­organic materials at 4 К-an electron spin resonance study of polyethylene and related hydrocarbons. Radiat Phys Chem 18:1041–1052CrossRefGoogle Scholar
  31. 31.
    Toriyama K, Iwasaki M (1979) Electron spin resonance studies on radiolysis of crystalline methanol at 4.2 K. J Am Chem Soc 101:2516–2523CrossRefGoogle Scholar
  32. 32.
    Feldman VI, Borzov SM, Sukhov FF, Slovokhotova NA (1987) Radical processes in polyethylene, irradiated at 10-100 K. Khimicheskaya fizika 6:477–483Google Scholar
  33. 33.
    Whittle E, Dows DA, Pimentel GC (1954) Matrix isolation method for the experimental study of unstable species. J Chem Phys 22:1943Google Scholar
  34. 34.
    Bouldin WV, Gordy W (1964) Energy migration + isotopic effects in irradiated solids at low temperature. Phys Rev 135:A806–A814CrossRefGoogle Scholar
  35. 35.
    Bhattachrya D, Willard JE (1981) Radiolytic production of trapped hydrogen atoms from organic compounds in Xe, Kr, and Ar at 10 K. J Phys Chem 85:154–159CrossRefGoogle Scholar
  36. 36.
    Muto H, Toriyama K, Nunome K, Iwasaki M (1982) Radiolysis of alkanes and olefins in xenon matrices at 4.2 K as studied by electron spin resonance-formation and trapping of hydrogen atoms and their subsequent reactions at cryogenic temperatures. Radiat Phys Chem 19:201–208CrossRefGoogle Scholar
  37. 37.
    Gotoh K, Miyazaki T, Fueki K, Lee K-P (1987) Electron spin resonance study of radiolysis of solid rare-gas alkane mixtures at 4.2 K-ionic fragmentation and initial energy of hot H-atoms. Radiat Phys Chem 30:89–89Google Scholar
  38. 38.
    Qin X-Z, Trifunac AD (1990) Radiolytic generation of radical cations in xenon matrices-tetramethylcyclopropane radical cation and its transformations. J Phys Chem 94:3188–3192CrossRefGoogle Scholar
  39. 39.
    Knight LB (1991) Generation and study of inorganic cations on rare gas matrices. In: Lund A, Shiotani M (eds) Radical ionic. Kluwer, DordrechtGoogle Scholar
  40. 40.
    Knight LB, King GM, Petty JT, Matsushita M, Momose T, Shida T (1995) Electron-spin-resonance studies of the methane radical cations ((CH4  + )C12,13, (CDH3 + )C12,13, (CD2H2 + )C12, (CD3H + )C12, (CD4  + )C12) in solid neon matrices between 2.5 and 11 K-analysis of tunnelling. J Chem Phys 103:3377–3386CrossRefGoogle Scholar
  41. 41.
    Yamada S, Komaguchi K, Shiotani M, Benetis NP, Sornes AR (1999) High-resolution EPR and quantum effects on CH3, CH2D, CHD2, and CD3 radicals under argon matrix isolation conditions. J Phys Chem A 103:4823–4829CrossRefGoogle Scholar
  42. 42.
    Feldman VI, Baranova IA, Kobzarenko AV, Tyulpina IV (2011) Fragmentation of the primary radical cations of methoxyacetone and diacetonyl in a solid argon matrix. High Energy Chem 45:351–352CrossRefGoogle Scholar
  43. 43.
    Kobzarenko AV, Sukhov FF, Orlov AY, Kovalev GV, Baranova IA, Feldman VI (2012) ­Effect of molecular structure on fragmentation of organic molecules in solid rare gas matrices. ­Radiat Phys Chem 81:1434–1439CrossRefGoogle Scholar
  44. 44.
    Bally T (1991) Electronic structure, spectroscopy, and photochemistry of organic radical ­cations. In: Lund A, Shiotani M (eds) Radical ionic systems. Properties in condensed phases. Kluwer, DordrechtGoogle Scholar
  45. 45.
    Feldman VI, Sukhov FF, Slovokhotova NA, Bazov VP (1996) Radiation-induced degradation of alkane molecules in solid rare gas matrices. Radiat Phys Chem 48:261–269CrossRefGoogle Scholar
  46. 46.
    Feldman VI, Sukhov FF, Orlov AYu (1997) Further evidence for formation of xenon ­dihydride from neutral hydrogen atoms: a comparison of ESR and IR spectroscopic results. Chem Phys Lett 280:507–512CrossRefGoogle Scholar
  47. 47.
    Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV (2008) High-resolution EPR spectroscopy of small radicals in a solid 136Xe matrix. Mendeleev Commun 18:121–122CrossRefGoogle Scholar
  48. 48.
    Feldman VI, Orlov AYu, Sukhov FF (2008) Hydrogen atoms in solid xenon: trapping site structure, distribution, and stability as revealed by EPR studies in monoisotopic and isotopically enriched xenon matrices. J Chem Phys 128:214511CrossRefGoogle Scholar
  49. 49.
    Shida T, Hamill WH (1966) Molecular ions in radiation chemistry I. Formation of aromatic-amine cations in CCl4 by resonance charge transfer at 77 K. J Chem Phys 44:2369–2374CrossRefGoogle Scholar
  50. 50.
    Grimpson A, Simpson GA (1968) Spectrophotometric identification of gamma-radiolytic ­intermediates in a new halogenic glassy matrix. J Phys Chem 72:1776–1779CrossRefGoogle Scholar
  51. 51.
    Henly E, Johnson E (1969) The chemistry and physics of high energy reactions. University Press, CambridgeGoogle Scholar
  52. 52.
    Hubbell JH, Settler SM (1996) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. http://www.nist.gov/pml/data/xraycoef. Accessed 28 Feb 2014
  53. 53.
    Pacansky J, Maier M (1990) Irradiation of small molecules isolated in rare- gas matrices by high-energy electron-beams. J Molec Struct 222:33–75CrossRefGoogle Scholar
  54. 54.
    Ennis CP, Kaiser RI (2010) Mechanistical studies on the electron-induced degradation of polymers: polyethylene, polytetrafluoroethylene, and polystyrene. Phys Chem Chem Phys 12:14884–14901CrossRefGoogle Scholar
  55. 55.
    Sukhov FF (1988) Low-temperature radiation-chemical processes in polymers and their low-molecular-weight analogues (in Russian). Dissertation, Karpov Institute of Physical ChemistryGoogle Scholar
  56. 56.
    Foner SN, Cochran EL, Bowers VA, Jen CK (1960) Multiple trapping sites for hydrogen atoms in rare gas matrices. J Chem Phys 32:963–971CrossRefGoogle Scholar
  57. 57.
    Komaguchi K, Nomura K, Shiotani M (2007) High-resolution ESR study of the H center dot center dot center dot CH3, H center dot center dot center dot CHD2, D center dot center dot center dot CH2D, and D center dot center dot center dot CD3 radical pairs in solid argon. J Phys Chem A 111:726–733CrossRefGoogle Scholar
  58. 58.
    Feldman VI, Kobzarenko AV, Orlov AY, Sukhov FF (2012) The radiation-induced chemistry in solid xenon matrices. Low Temp Phys 38:766–773CrossRefGoogle Scholar
  59. 59.
    Eberlein J, Creuzburg M (1997) Mobility of atomic hydrogen in solid krypton and xenon. J Chem Phys 106:2188–2194CrossRefGoogle Scholar
  60. 60.
    Kinugawa K, Miyazaki T, Hase H (1978) Trapping and reaction of hydrogen atoms produced by ultraviolet photolysis of xenon-isobutane mixtures at 4 and 77 K. J Phys Chem 82(15):1697–1700CrossRefGoogle Scholar
  61. 61.
    Apkarian VA, Schwentner N (1999) Molecular photodynamics in rare gas solids. Chem Rev 99:1481–1514CrossRefGoogle Scholar
  62. 62.
    Pettresson M, Kriachnchev L, Roozeman RJ, Räsänen M (2000) Photolysis of HI in solid Xe: production and distribution of hydrogen atoms. Chem Phys Lett 323:506–513CrossRefGoogle Scholar
  63. 63.
    Muto H, Nunome K, Iwasaki M (1980) Reactions of thermal H atoms at cryogenic temperature below 77 K as studied by ESR. Competitive H abstraction from C2H6 and HI in rare-gas Matrices. J Phys Chem 84:3402–3408CrossRefGoogle Scholar
  64. 64.
    Pettersson M, Lundell J, Räsänen M (1995) Neutral rare-gas containing charge-transfer ­molecules in solid matrices. I. HXeCl, HXeBr, HXeI, and HKrCl in Kr and Xe. J Chem. Phys 102:6423–6431Google Scholar
  65. 65.
    Pettersson M, Lundell J, Räsänen M (1995) Neutral rare gas containing charge transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe. J Chem Phys 103:205–210CrossRefGoogle Scholar
  66. 66.
    Feldman VI, Sukhov FF (1996) Formation and decay of transient xenon dihydride resulting from hydrocarbon radiolysis in a xenon matrix. Chem Phys Lett 255:425–430CrossRefGoogle Scholar
  67. 67.
    Pettersson M, Nieminen J, Khriachnchev L, Räsänen M (1997) The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe. J Chem Phys 107:8423–8431CrossRefGoogle Scholar
  68. 68.
    Pettersson M, Lundell J, Räsänen M (1999) New rare-gas-containing neutral molecules. Eur J Inorg Chem 1999:729–737CrossRefGoogle Scholar
  69. 69.
    Khriachtchev L, Räsänen M, Gerber RB (2009) New chemistry at low temperatures. Acc Chem Res 42:183–191CrossRefGoogle Scholar
  70. 70.
    Grochala L, Khriachtchev L, Räsänen M (2011) Noble-gas chemistry. In: Khriachtchev F (ed) Physics and chemistry at low temperatures. Pan Stanford Publishing, SingaporeGoogle Scholar
  71. 71.
    Khriachtchev L, Tanskanen H, Pettersson M, Räsänen M, Feldman V, Sukhov F, Orlov A, Shestakov AF (2002) Isotopic effect in thermal mobility of atomic hydrogen in solid xenon. J Chem Phys 116:5708–5716CrossRefGoogle Scholar
  72. 72.
    Kobzarenko AV (2013) Mechanism of the radiation-chemical synthesis and properties of some xenon and krypton hydrides (in Russian). Dissertation, Lomonosov Mocsow State UniversityGoogle Scholar
  73. 73.
    Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV (2003) Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. J Am Chem Soc 125:4698–4699CrossRefGoogle Scholar
  74. 74.
    Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV, Logacheva ES, Tyurin DA (2005) Chemical reactions in the xenon-acetylene systems irradiated with fast electrons at 16 K: formation of xenon-containing molecules and radicals. Russ Chem Bull 54:1458–1466CrossRefGoogle Scholar
  75. 75.
    Ryazantsev SV, Kobzarenko AV, Feldman VI (2013) Photolabile xenon hydrides: a case study of HXeSH and HXeH. J Chem Phys 129:124315 (1–7)CrossRefGoogle Scholar
  76. 76.
    Khriachtchev L, Tanskanen H, Lundell J, Pettersson M, Kiljunen T, Räsänen M (2003) ­Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. J Am Chem Soc 125:4696–4697CrossRefGoogle Scholar
  77. 77.
    Cochran EL, Adrian FJ, Bowers VA (1964) ESR study of ethynyl and vinyl free radicals. J Chem Phys 40:213–220CrossRefGoogle Scholar
  78. 78.
    Chemistry Webbook NIST. NIST Standard Reference Database Number 69 (2011). http://webbook.nist.gov/chemistry/. Accessed 28 Feb 2013
  79. 79.
    Kasai PH (1972) Electron spin resonance studies of vinyl, propargyl, and butatrienyl radicals isolated in argon matrices. J Am Chem Soc 94:5950–5956CrossRefGoogle Scholar
  80. 80.
    Fӧldiak G (ed) (1981) Radiation chemistry of hydrocarbons. Akademiai Kiado, BudapestGoogle Scholar
  81. 81.
    Feldman VI, Sukhov FF, Logacheva EA, Orlov AYu, Tyulpina IV, Tyurin DA (2007) Reactions of H atoms produced by electron irradiation of benzene in solid xenon: IR spectrum of cylohexadienyl radical and possible involvement of HXeC6H5. Chem Phys Lett 437:207–211CrossRefGoogle Scholar
  82. 82.
    Pettersson MA, Khriachtchev L, Lundell J, Räsänen M (1999) Chemical compound formed from water and xenon: HXeOH. J Am Chem Soc 121:11904–11905CrossRefGoogle Scholar
  83. 83.
    Isoniemi E, Pettersson M, Khriachtchev L, Lundell J, Räsänen M (1999) Infrared spectroscopy of H2S and SH in rare-gas matrixes. J Phys Chem A 103:679–685CrossRefGoogle Scholar
  84. 84.
    Tanskanen H, Khriachtchev L, Räsänen M, Feldman VI, Sukhov FF, Orlov AY, Tyurin DA (2005) Infrared absorption and electron paramagnetic resonance studies of vinyl radical in noble-gas matrices. J Chem Phys 123:064318CrossRefGoogle Scholar
  85. 85.
    Bahou M, Wu Y-J, Lee Y-P (2012) A new method for investigating infrared spectra of protonated benzene (C6H7 +) and cyclohexadienyl radical (c-C6H7) using para-hydrogen. J Chem Phys 2012:154304CrossRefGoogle Scholar
  86. 86.
    Khriachtchev L, Pettersson M, Lundell J, Tanskanen H, Kiviniemi T, Runeberg N, Räsänen M (2003) A neutral xenon-containing radical, HXeO. J Am Chem Soc 125:1454–1455CrossRefGoogle Scholar
  87. 87.
    Feldman V (2014) Structure and reactions of aliphatic “Bridged” bifunctional radical ions: exploring fine tuning in radiation chemistry. Isr J Chem 2014 (in press)Google Scholar
  88. 88.
    Feldman VI, Sukhov FF, Orlov AYu, Shmakova NA (2001) Radiation chemistry of organic molecules in solid rare gas matrices: 2 selective deprotonation of the primary radical cations upon irradiation of oxygen-containing molecules in xenon matrices. High Energy Chem 35:319–327CrossRefGoogle Scholar
  89. 89.
    Karatun AA, Sukhov FF, Slovokhotova NA (1981) Stabilization of HArn  + , HKrn  + , and HXen  + in solid inert-gases on irradiation of 2-chloropropane in them by fast electrons. Khim Vys Energ 156:371–372Google Scholar
  90. 90.
    Kunttu H, Seetula J, Rasanen M, Apkarian A (1992) Photogeneration of ions via delocalized charge-transfer states 1 xe2h + and xe2d +  in solid xe. J Chem Phys 96:5630–5635CrossRefGoogle Scholar
  91. 91.
    Fridgen TD, Parnis JM (1999) A density functional theory study of the catalytic role of Ar, Kr, Xe, and N2 in the CH3OH center dot + to CH2OH2 center dot + isomerization reaction. Int J Mass Spectrom Ion Process 190-191:181–194CrossRefGoogle Scholar
  92. 92.
    Fourre I, Silvi B, Chaquin P, Sevin A (1999) Electron localization function comparative study of ground state, triplet state, radical anion, and cation in model carbonyl and imine compounds. J Comput Chem 20:897–910CrossRefGoogle Scholar
  93. 93.
    Köppe R, Kasai PH (1994) Aliphatic ketone anion radicals: a matrix isolation ESR study. J Phys Chem 98:12904–12910CrossRefGoogle Scholar
  94. 94.
    Saenko EV, Laikov DN, Baranova IA, Feldman VI (2011) Communication: stabilization of radical anions with weakly bound electron in condensed media: a case study of diacetonyl radical anion. J Chem Phys 135:101103 (1–4)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2014

Authors and Affiliations

  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations