The Special Case of VV Cephei

  • Philip D. Bennett
  • Wendy Hagen Bauer
Part of the Astrophysics and Space Science Library book series (ASSL, volume 408)


VV Cephei (M2 Iab + B0–2 V) is the only known ζ Aur binary that has an M-type supergiant. Studies of its atmospheric eclipses provide a valuable extension to what can be learned by eclipse mapping, but are fraught with many challenges. The space-UV absorption spectrum is extremely rich, and line blending is severe. Wind interaction and accretion effects are prominent, and the spectrum of the B star companion is heavily veiled by overlying Balmer continuum emission, which usually exceeds that of the B-star’s continuum flux in the UV. An accretion region immediately around the B star gives rise to a rich spectrum of lines, some of which sometimes show prominent inverse P Cygni profiles. The chromospheric absorption spectrum shows structure in the line profiles that persists throughout chromospheric eclipse, and implies the existence of large-scale supersonic, complex velocity flows across the whole extended chromosphere of the M supergiant. Spectrum formation in the atmosphere of VV Cep is more complex than in the other ζ Aur binaries owing to the much higher rate of mass loss from the primary. This chapter summarizes the fundamental stellar and orbit parameters of VV Cep, and presents key results found from three decades of UV astronomy. It also presents a simple model of the chromosphere and wind.


Column Density Balmer Line Total Eclipse Lower Chromosphere Chromospheric Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bauer, W.H., Bennett, P.D.: PASP 112, 31 (2000)ADSCrossRefGoogle Scholar
  2. Bauer, W.H., Bennett., P.D., Brown, A.: ApJS 171, 249 (2007)Google Scholar
  3. Bauer, W.H., Gull, T.R., Bennett, P.D.: AJ 136, 1312 (2008)ADSCrossRefGoogle Scholar
  4. Bauer, W.H., Stencel, R.E., Neff, D.H.: A&AS 90, 175 (1991)ADSCrossRefGoogle Scholar
  5. Eggleton, P.P.: ApJ 268, 368 (1983)ADSCrossRefGoogle Scholar
  6. Faraggiana, R., Selvelli, P.L.: A&A 76, L18 (1979)ADSGoogle Scholar
  7. Hack, M., Engin, S., Yilmaz, N.: A&A 225, 143 (1989)ADSGoogle Scholar
  8. Hack, M., Engin, S., Yilmaz, N., et al.: A&AS 95, 589 (1992)ADSGoogle Scholar
  9. Hagen, W., Black, J.H., Dupree, A.K., et al.: ApJ 238, 203 (1980)ADSCrossRefGoogle Scholar
  10. Hirata, R., Horaguchi, T.: Atomic Spectral Line List, SIMBAD On-line Data Catalog, VI/69 (1995)Google Scholar
  11. Hutchings, J.B., Wright, K.O.: MNRAS 155, 203 (1971)ADSCrossRefGoogle Scholar
  12. Kawabata, S., Saitō, M.: PASJ 49, 101 (1997)ADSGoogle Scholar
  13. Leedjärv, L., Graczyk, D., Mikolajewsi, M. et al.: A&A 349, 511 (1999)ADSGoogle Scholar
  14. Möllenhoff, C., Schaifers, K.: A&A 94, 333 (1981)ADSGoogle Scholar
  15. Pacyński, B.: ARA&A 9, 183 (1971)ADSCrossRefGoogle Scholar
  16. Savage, B.D, Sembach, K.R.: ApJ 379, 245 (1991)ADSCrossRefGoogle Scholar
  17. Stencel, R.E., Potter, D.E., Bauer, W.H.: PASP 105, 45 (1993)ADSCrossRefGoogle Scholar
  18. van de Kamp, P.: AJ 82, 750 (1977)ADSCrossRefGoogle Scholar
  19. Wright, K.O.: JRASC 71, 152 (1977)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Astronomy and PhysicsSaint Mary’s UniversityHalifaxCanada
  2. 2.Eureka Scientific, Inc.OaklandUSA
  3. 3.Whitin ObservatoryWellesley CollegeWellesleyUSA

Personalised recommendations