Sensor Data Visualisation: A Composition-Based Approach to Support Domain Variability

  • Ivan Logre
  • Sébastien Mosser
  • Philippe Collet
  • Michel Riveill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8569)

Abstract

In the context of the Internet of Things, sensors are surrounding our environment. These small pieces of electronics are inserted in everyday life’s elements (e.g., cars, doors, radiators, smartphones) and continuously collect information about their environment. One of the biggest challenges is to support the development of accurate monitoring dashboard to visualise such data. The one-size-fits-all paradigm does not apply in this context, as user’s roles are variable and impact the way data should be visualised: a building manager does not need to work on the same data as classical users. This paper presents an approach based on model composition techniques to support the development of such monitoring dashboards, taking into account the domain variability. This variability is supported at both implementation and modelling levels. The results are validated on a case study named SmartCampus, involving sensors deployed in a real academic campus.

Keywords

Variability Data visualisation Sensors Model composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Few, S.: Information Dashboard Design. O’Reilly (2006)Google Scholar
  2. 2.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer (2005)Google Scholar
  3. 3.
    Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-Wesley Professional (2001)Google Scholar
  4. 4.
    Botts, M., Robin, A.: OpenGIS Sensor Model Language (SensorML) Implementation Specification. Technical report, OGC (July 2007)Google Scholar
  5. 5.
    Haderer, N., Rouvoy, R., Seinturier, L.: Dynamic Deployment of Sensing Experiments in the Wild Using Smartphones. In: Dowling, J., Taïani, F. (eds.) DAIS 2013. LNCS, vol. 7891, pp. 43–56. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Brel, C., Pinna-Déry, A.M., Faron-Zucker, C., Renevier, P., Riveill, M.: OntoCompo: An Ontology-Based Interactive System To Compose Applications. In: Seventh International Conference on Web Information Systems and Technologies(WEBIST 2011), pp. 322–327. Springer (May 2011)Google Scholar
  7. 7.
    Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques: Research articles. Softw. Pract. Exper. 35(8), 705–754 (2005)CrossRefGoogle Scholar
  8. 8.
    Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented reuse method with domain-specific reference architectures. Annals of Software Engineering 5(1), 143–168 (1998)CrossRefGoogle Scholar
  9. 9.
    Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire, P.: On extracting feature models from product descriptions. In: Eisenecker, U.W., Apel, S., Gnesi, S. (eds.) VaMoS, pp. 45–54. ACM (2012)Google Scholar
  12. 12.
    Acher, M., Collet, P., Lahire, P., France, R.B.: Familiar: A domain-specific language for large scale management of feature models. Sci. Comput. Program. 78(6), 657–681 (2013)CrossRefGoogle Scholar
  13. 13.
    Rossi, G.: Web modeling languages strike back. IEEE Internet Computing 17(4), 4–6 (2013)CrossRefGoogle Scholar
  14. 14.
    Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A unifying reference framework for multi-target user interfaces. Interacting with Computers 15(3), 289–308 (2003)CrossRefGoogle Scholar
  15. 15.
    García Frey, A., Ceret, E., Dupuy-Chessa, S., Calvary, G., Gabillon, Y.: Usicomp: An extensible model-driven composer. In: EICS, pp. 263–268 (2012)Google Scholar
  16. 16.
    Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated user interface mashups using w3c widgets. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059, pp. 49–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Demeure, A., Calvary, G., Coninx, K.: Comet(s), a software architecture style and an interactors toolkit for plastic user interfaces. In: Graham, T.C.N. (ed.) DSV-IS 2008. LNCS, vol. 5136, pp. 225–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel, J.M.: Combining aspect-oriented modeling with property-based reasoning to improve user interface adaptation. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2011, pp. 85–94. ACM, New York (2011)Google Scholar
  19. 19.
    Meliá, S., Gómez, J., Pérez, S., Díaz, O.: Architectural and technological variability in rich internet applications. IEEE Internet Computing 14(3), 24–32 (2010)CrossRefGoogle Scholar
  20. 20.
    Xue, Y.: Reengineering legacy software products into software product line based on automatic variability analysis. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 1114–1117. ACM, New York (2011)Google Scholar
  21. 21.
    Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Model comparison to synthesize a model-driven software product line. In: de Almeida, E.S., Kishi, T., Schwanninger, C., John, I., Schmid, K. (eds.) IEEE SPLC, pp. 90–99 (2011)Google Scholar
  22. 22.
    Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On extracting feature models from sets of valid feature combinations. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 53–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering feature models. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) ICSE, pp. 461–470. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ivan Logre
    • 1
  • Sébastien Mosser
    • 1
  • Philippe Collet
    • 1
  • Michel Riveill
    • 1
  1. 1.CNRS, I3S, UMR 7271Université Nice – Sophia AntipolisSophia AntipolisFrance

Personalised recommendations