Advertisement

Normalizing Heterogeneous Service Description Models with Generated QVT Transformations

  • Simon Schwichtenberg
  • Christian Gerth
  • Zille Huma
  • Gregor Engels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8569)

Abstract

Service-Oriented Architectures (SOAs) enable the reuse and substitution of software services to develop highly flexible software systems. To benefit from the growing plethora of available services, sophisticated service discovery approaches are needed that bring service requests and offers together. Such approaches rely on rich service descriptions, which specify also the behavior of provided/requested services, e.g., by pre- and postconditions of operations. As a base for the specification a data schema is used, which specifies the used data types and their relations. However, data schemas are typically heterogeneous wrt. their structure and terminology, since they are created individually in their diverse application contexts. As a consequence the behavioral models that are typed over the heterogeneous data schemas, cannot be compared directly. In this paper, we present an holistic approach to normalize rich service description models to enable behavior-aware service discovery. The approach consists of a matching algorithm that helps to resolve structural and terminological heterogeneity in data schemas by exploiting domain-specific background ontologies. The resulting data schema mappings are represented in terms of Query View Transformation (QVT) relations that even reflect complex n:m correspondences. By executing the transformation, behavioral models are automatically normalized, which is a prerequisite for a behavior-aware operation matching.

Keywords

SOA Service Description Ontologies Behavioral Models Matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Version 1.1 (January 2011), http://www.omg.org/spec/QVT/1.1/PDF/
  2. 2.
    OMG Object Constraint Language (OCL) Version 2.3.1 (January 2012), http://www.omg.org/spec/OCL/2.3.1/PDF
  3. 3.
    Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching Unstructured Vocabularies using a Background Ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 182–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: Efficient Matching for Large Real-World Schemas and Ontologies. Proc. of the VLDB Endowment 2(2), 1586–1589 (2009)CrossRefGoogle Scholar
  5. 5.
    de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Language WSML: An Overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 590–604. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring Consistency of Business Process Models and Web Services Using Visual Contracts. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 17–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evolution of Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 52–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Huma, Z., Gerth, C., Engels, G., Juwig, O.: A UML-based Rich Service Description Language for Automatic Service Discovery of Heterogeneous Service Partners. In: CAiSE Forum, pp. 90–97 (2012)Google Scholar
  10. 10.
    Huma, Z., Gerth, C., Engels, G., Juwig, O.: Towards an Automatic Service Discovery for UML-based Rich Service Descriptions. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 709–725. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different Models for Model Matching: An analysis of approaches to support model differencing. In: Proceedings of CVSM 2009 @ ICSE 2009, pp. 1–6. IEEE Computer Society (2009)Google Scholar
  12. 12.
    Maedche, A., Zacharias, V.: Clustering Ontology-based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 348–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Mendes, P.N., Jakob, M., Bizer, C.: DBpedia for NLP: A Multilingual Cross-domain Knowledge Base. In: Proc. of the 8th International Conference on Language Resources and Evaluation, LREC 2012 (2012)Google Scholar
  14. 14.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    OWL-S Coalition. OWL-based Web Service Ontology (2006), http://www.ai.sri.com/daml/services/owl-s/1.2/
  16. 16.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sabou, M., d’Aquin, M., Motta, E.: SCARLET: SemantiC RelAtion DiscoveRy by Harvesting OnLinE OnTologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 854–858. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    SAWSDL Working Group. Semantic Annotations for WSDL and XML Schema, SAWSDL (2007), http://www.w3.org/TR/2007/REC-sawsdl-20070828/
  19. 19.
    Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges (2012)Google Scholar
  20. 20.
    Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983)Google Scholar
  21. 21.
    Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-Oriented Design Differencing. In: Proc. of the 20th IEEE/ACM International Conference on Automated Software Engineering, pp. 54–65. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Simon Schwichtenberg
    • 1
  • Christian Gerth
    • 1
  • Zille Huma
    • 1
  • Gregor Engels
    • 1
  1. 1.s-lab - Software Quality LabUniversity of PaderbornGermany

Personalised recommendations