Using Topology Information for Protein-Protein Interaction Prediction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8626)


The reconstruction of protein-protein interaction networks is nowadays an important challenge in systems biology. Computational approaches can address this problem by complementing high-throughput technologies and by helping and guiding biologists in designing new laboratory experiments. The proteins and the interactions between them form a network, which has been shown to possess several topological properties. In addition to information about proteins and interactions between them, knowledge about the topological properties of these networks can be used to learn accurate models for predicting unknown protein-protein interactions. This paper presents a principled way, based on Bayesian inference, for combining network topology information jointly with information about proteins and interactions between them. The goal of this combination is to build accurate models for predicting protein-protein interactions. We define a random graph model for generating networks with topology similar to the ones observed in protein-protein interaction networks. We define a probability model for protein features given the absence/presence of an interaction and combine this with the random graph model by using Bayes’ rule, to finally arrive at a model incorporating both topological and feature information.


protein-protein interaction Bayesian methods network analysis 


  1. 1.
    Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein–protein interactions. Bioinformatics 21(1), 38–46 (2005)CrossRefGoogle Scholar
  2. 2.
    Chen, X.W., Liu, M.: Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21(24), 4394–4400 (2005)CrossRefGoogle Scholar
  3. 3.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6(2), 125–145 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Friedel, C., Zimmer, R.: Inferring topology from clustering coefficients in protein-protein interaction networks. BMC Bioinformatics 7, 519 (2006)CrossRefGoogle Scholar
  5. 5.
    Geurts, P., Touleimat, N., Dutreix, M., d’Alché-Buc, F.: Inferring biological networks with output kernel trees. BMC Bioinformatics (PMSB 2006 Special Issue) 8(suppl. 2), S4 (2007)Google Scholar
  6. 6.
    Geurts, P., Wehenkel, L., d’Alché-Buc, F.: Gradient boosting for kernelized output spaces. In: Proceedings of the 24th International Conference on Machine Learning. ACM International Conference Proceeding Series, vol. 227, pp. 289–296. ACM (2007)Google Scholar
  7. 7.
    Geurts, P., Wehenkel, L., d’Alché Buc, F.: Kernelizing the output of tree-based methods. In: Proceedings of the 23th International Conference on Machine Learning, pp. 345–352 (2006)Google Scholar
  8. 8.
    Hollander, M., Wolfe, D.: Nonparametric Statistical Methods. John Wiley & Sons (1999)Google Scholar
  9. 9.
    Jansen, R., Yu, H., et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644), 449–453 (2003)CrossRefGoogle Scholar
  10. 10.
    Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)CrossRefGoogle Scholar
  11. 11.
    Kashima, H., Yamanishi, Y., Kato, T., Sugiyama, M., Tsuda, K.: Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information. Bioinformatics 25(22), 2962–2968 (2009)CrossRefGoogle Scholar
  12. 12.
    Kuchaiev, O., Rasajski, M., Higham, D.J., Przulj, N.: Geometric de-noising of protein-protein interaction networks. PLOS Computational Biology 5(8) (2009)Google Scholar
  13. 13.
    Li, Z.C., Lai, Y.H., et al.: Identifying functions of protein complexes based on topology similarity with random forest. Mol. Biosyst. (10), 514–525 (2014)Google Scholar
  14. 14.
    Lin, N., Wu, B., Jansen, R., Gerstein, M., Zhao, H.: Information assessment on predicting protein-protein interactions. BMC Bioinformatics 5, 154 (2004)CrossRefGoogle Scholar
  15. 15.
    Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)CrossRefGoogle Scholar
  16. 16.
    Memisevic, V., Milenkovic, T., Przulj, N.: Complementarity of network and sequence information in homologous proteins. Journal of Integrative Bioinformatics 7(3), 135 (2010)Google Scholar
  17. 17.
    Milenkovic, T., Przulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Informatics 6, 257–273 (2008)Google Scholar
  18. 18.
    Mohamed, T.P., Carbonell, J.G., Ganapathiraju, M.K.: Active learning for human protein-protein interaction prediction. BMC Bioinformatics 11(suppl. 1), S57 (2010)Google Scholar
  19. 19.
    Muntean, M., Valean, H., Ileana, I., Rotar, C.: Improving classification with support vector machine for unbalanced data. In: Proceedings of 2010 IEEE International Conference on Automation, Quality and Testing, Robotics, THETA, 17th edn., pp. 234–239 (2010)Google Scholar
  20. 20.
    Park, Y., Marcotte, E.M.: Revisiting the negative example sampling problem for predicting protein-protein interactions. Bioinformatics 27(21), 3024–3028 (2011)CrossRefGoogle Scholar
  21. 21.
    Przulj, N., Corneil, D., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)CrossRefGoogle Scholar
  22. 22.
    Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for protein-protein interaction prediction from multiple sources. In: Altman, R.B., Jung, T.A., Klein, T.E., Dunker, A.K., Hunter, L. (eds.) Pacific Symposium on Biocomputing. World Scientific (2005)Google Scholar
  23. 23.
    Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: A mixture of feature experts approach for protein-protein interaction prediction. BMC Bioinformatics 8(suppl. 10), S6 (2007)Google Scholar
  24. 24.
    Qi, Y., Tastan, O., Carbonell, J.G., Klein-Seetharaman, J., Weston, J.: Semi-supervised multi-task learning for predicting interactions between hiv-1 and human proteins. Bioinformatics 26(18), i645–i652 (2010)Google Scholar
  25. 25.
    Sarajlic, A., Janjic, V., Stojkovic, N., Radak, D., Przulj, N.: Network topology reveals key cardiovascular disease genes. PLoS One 8(8), e71537 (2013)Google Scholar
  26. 26.
    Shi, M.G., Xia, J.F., Li, X.L., Huang, D.S.: Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset. Amino Acids 38(3), 891–899 (2010)CrossRefGoogle Scholar
  27. 27.
    Sprinzak, E., Altuvia, Y., Margalit, H.: Characterization and prediction of protein-protein interactions within and between complexes. PNAS 103(40), 14718–14723 (2006)CrossRefGoogle Scholar
  28. 28.
    Tanaka, R., Yi, T.M., Doyle, J.: Some protein interaction data do not exhibit power law statistics. FEBS Letters 579, 5140–5144 (2005)CrossRefGoogle Scholar
  29. 29.
    Tastan, O., Qi, Y., Carbonell, J.G., Klein-Seetharaman, J.: Prediction of interactions between hiv-1 and human proteins by information integration. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 14, pp. 516–527 (2009)Google Scholar
  30. 30.
    von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)CrossRefGoogle Scholar
  31. 31.
    Yamanishi, Y., Vert, J.-P., Kanehisa, M.: Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20(1), 363–370 (2004)CrossRefGoogle Scholar
  32. 32.
    Yu, J., Guo, M., Needham, C.J., Huang, Y., Cai, L., Westhead, D.: Simple sequence-based kernels do not predict protein-protein interactions. Bioinformatics 26(20), 2610–2614 (2010)CrossRefGoogle Scholar
  33. 33.
    Zhang, L.V., Wong, S., King, O., Roth, F.: Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5, 38 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenThe Netherlands
  2. 2.Faculty of Science“1 Decembrie 1918” UniversityAlba-IuliaRomania

Personalised recommendations