Koszul Binomial Edge Ideals

  • Viviana Ene
  • Jürgen Herzog
  • Takayuki Hibi
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 96)


It is shown that if the binomial edge ideal of a graph G defines a Koszul algebra, then G must be chordal and claw free. A converse of this statement is proved for a class of chordal and claw-free graphs.


Koszul algebra Binomial edge ideals 



We would like to thank the referee for the careful reading of our paper. Viviana Ene was supported by the grant UEFISCDI, PN-II-ID-PCE- 2011-3-1023.


  1. 1.
    Avramov, L.L.: Infinite free resolutions. In: Elias, J., et al. (eds.) Six Lectures on Commutative Algebra. Prog. Math., vol. 166, pp. 1–118. Birkhäuser, Basel (1998)CrossRefGoogle Scholar
  2. 2.
    Avramov, L.L., Conca, A., Iyengar, S.: Subadditivity of syzygies of Koszul algebras. Math. Ann. doi: 10.1007/s00208-014-1060-4 (2014)Google Scholar
  3. 3.
    Backelin, J., Fröberg, R.: Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pures Appl. 30(2), 85–97 (1985)zbMATHGoogle Scholar
  4. 4.
    Conca, A., De Negri, E., Rossi, M.E.: Koszul algebras and regularity. In: Peeva, I. (ed.) Commutative Algebra, Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday, pp. 285–315. Springer, New York (2013)Google Scholar
  5. 5.
    Cox, D.A., Erskine, A.: On closed graphs. arXiv:1306.5149 (2013)Google Scholar
  6. 6.
    Crupi, M., Rinaldo, G.: Binomial edge ideals with quadratic Gröbner bases. Electr. J. Comb. 18, P211 (2011)MathSciNetGoogle Scholar
  7. 7.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: A computer algebra system for polynomial computations. (2011)
  8. 8.
    Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 38, 71–76 (1961)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra. Graduate Studies in Mathematics, vol. 130. American Mathematical Society, Providence (2011)Google Scholar
  10. 10.
    Ene, V., Zarojanu, A.: On the regularity of binomial edge ideals. Math. Nachr. doi: 10.1002/mana.201300186 (2014)Google Scholar
  11. 11.
    Ene, V., Herzog, J., Hibi, T.: Cohen-Macaulay binomial edge ideals. Nagoya Math. J. 204, 57–68 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gulliksen, T.H.: A proof of the existence of minimal R-algebra resolutions. Acta Math. 120, 53–58 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herzog, J., Hibi, T., Hreinsdotir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math 45, 317–333 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Saeedi Madani, S., Kiani, D.: Binomial edge ideals of graphs. Electr. J. Comb. 19, P44 (2012)Google Scholar
  15. 15.
    Saeedi Madani, S., Kiani, D.: On the binomial edge ideal of a pair of graphs. Electr. J. Comb. 20, P48 (2013)Google Scholar
  16. 16.
    Matsuda, K., Murai, S.: Regularity bounds for binomial edge ideals. J. Comm. Algebra 5, 141–149 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ohsugi, H., Hibi, T.: Toric ideals generated by quadratic binomials. J. Algebra 218, 509–527 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ohsugi, H., Herzog, J., Hibi, T.: Combinatorial pure subrings. Osaka J. Math. 37, 745–757 (2000)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ohtani, M.: Graphs and ideals generated by some 2-minors. Commun. Algebra 39(3), 905–917 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rauf, A., Rinaldo, G.: Construction of Cohen-Macaulay binomial edge ideals. Commun. Algebra 42(1), 238–252 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Roos, J.E., Sturmfels, B.: A toric ring with irrational Poincaré-Betti series. C. R. Acad. Sci. Paris Sér. I Math. 326, 141–146 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tate, J.: Homology of noetherian rings and local rings. Illinois J. Math. 1, 14–25 (1957)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceOvidius UniversityConstantaRomania
  2. 2.Simion Stoilow Institute of Mathematics of Romanian AcademyResearch group of the project ID-PCE-2011-1023BucharestRomania
  3. 3.Fachbereich MathematikUniversität Duisburg-EssenEssenGermany
  4. 4.Department of Pure and Applied Mathematics, Graduate School of Information Science and TechnologyOsaka UniversityToyonakaJapan

Personalised recommendations