Decomposition Algorithm for the Single Machine Scheduling Polytope

  • Ruben Hoeksma
  • Bodo Manthey
  • Marc Uetz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8596)


Given an \(n\)-vector \(p\) of processing times of jobs, the single machine scheduling polytope \(C\) arises as the convex hull of completion times of jobs when these are scheduled without idle time on a single machine. Given a point \(x\in C\), Carathéodory’s theorem implies that \(x\) can be written as convex combination of at most \(n\) vertices of \(C\). We show that this convex combination can be computed from \(x\) and \(p\) in time \(O (n^2)\), which is linear in the naive encoding of the output. We obtain this result using essentially two ingredients. First, we build on the fact that the scheduling polytope is a zonotope. Therefore, all of its faces are centrally symmetric. Second, instead of \(C\), we consider the polytope \(Q\) of half times and its barycentric subdivision. We show that the subpolytopes of this barycentric subdivison of \(Q\) have a simple, linear description. The final decomposition algorithm is in fact an implementation of an algorithm proposed by Grötschel, Lovász, and Schrijver applied to one of these subpolytopes.


Completion Time Convex Hull Convex Combination Idle Time Single Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Maurice Queyranne for pointing us to the paper by Yasutake et al. [16], and Marc Pfetsch and Michael Joswig for helpful remarks concerning zonotopes.


  1. 1.
    Cai, Y., Daskalakis, C., Weinberg, S.M.: Optimal multi-dimensional mechanism design: reducing revenue to welfare maximization. In: Proceedings of 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 130–139. IEEE (2012)Google Scholar
  2. 2.
    Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory B 36, 161–188 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cunningham, W.H.: On submodular function minimization. Combinatorica 5, 186–192 (1985)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fonlupt, J., Skoda, A.: Strongly polynomial algorithm for the intersection of a line with a polymatroid. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 69–85. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization: Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988)Google Scholar
  7. 7.
    Hoeksma, R., Manthey, B., Uetz, M.: Decomposition algorithm for the single machine scheduling polytope. Technical Report TR-CTIT-13-25, CTIT, University of Twente.
  8. 8.
    Hoeksma, R., Uetz, M.: Two dimensional optimal mechanism design for a sequencing problem. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 242–253. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial time algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lee, C.W.: Subdivisions and triangulations of polytopes. In: Handbook of Discrete and Computational Geometry, chapter 17, 2nd edn. Chapman & Hall/CRC, Beca Raton (2004)Google Scholar
  11. 11.
    Munier, A., Queyranne, M., Schulz, A.S.: Approximation bounds for a general class of precedence constrained parallel machine scheduling problems. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 367–382. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  12. 12.
    Phillips, C., Stein, C., Wein, J.: Scheduling jobs that arrive over time. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 86–97. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  13. 13.
    Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program. 58(1), 263–285 (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Queyranne, M., Schulz, A.S.: Polyhedral approaches to machine scheduling. Preprint 408–1994, TU Berlin (1994)Google Scholar
  15. 15.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory B 80, 346–355 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., Takeda, M.: Online linear optimization over permutations. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 534–543. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  17. 17.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematic, vol. 152. Springer, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations