Coupled-Tasks in Presence of Bipartite Compatibilities Graphs

  • Benoit Darties
  • Gilles Simonin
  • Rodolphe Giroudeau
  • Jean-Claude König
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8596)

Abstract

We tackle the makespan minimization coupled-tasks problem in presence of incompatibility constraints. In particular, we focus on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks execution time and idle time duration. We study several problems in the framework of classic complexity and approximation for which the compatibility graph is bipartite (star, chain, \(\ldots \)). In such context, we design efficient polynomial-time approximation algorithms according to different parameters of the scheduling problem.

Notes

Acknowledgment

This work has been funded by the regional council of Burgundy.

References

  1. 1.
    Caprara, A., Kellerer, H., Pferschy, U.: A PTAS for the multiple subset sum problem with different knapsack capacities. Inf. Process. Lett. 73(3–4), 111–118 (2000)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. Siam J. Optim. 11(2), 308–319 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple subset sum. J. Heuristics 9(2), 99–111 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Darties, B., Simonin, G., Giroudeau, R., König, J.-C.: Scheduling stretched coupled-tasks with compatibilities constraints: model, complexity and approximation results for some class of graphs. Report, February 2014Google Scholar
  5. 5.
    Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Edmonds, J.: Maximum matching and a polyhedron with \(0,1\) vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Simonin, G., Darties, B., Giroudeau, R., König, J.C.: Isomorphic coupled-task scheduling problem with compatibility constraints on a single processor. J. Sched. 14(5), 501–509 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  9. 9.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)CrossRefMATHGoogle Scholar
  10. 10.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci. 66(2), 349–370 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    König, J.-C., Simonin, G., Giroudeau, R.: Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks. In: Project Management and Scheduling (2010)Google Scholar
  13. 13.
    Shapiro, R.D.: Scheduling coupled tasks. Naval Res. Logist. Q. 27, 477–481 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Benoit Darties
    • 1
  • Gilles Simonin
    • 2
  • Rodolphe Giroudeau
    • 3
  • Jean-Claude König
    • 3
  1. 1.LE2I-CNRS-UMR 6306-8DijonFrance
  2. 2.Insight Centre for Data AnalyticsUniversity College CorkCorkIreland
  3. 3.LIRMM-CNRS-UMR 5506-161MontpellierFrance

Personalised recommendations