Coupled-Tasks in Presence of Bipartite Compatibilities Graphs

  • Benoit Darties
  • Gilles Simonin
  • Rodolphe Giroudeau
  • Jean-Claude König
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8596)


We tackle the makespan minimization coupled-tasks problem in presence of incompatibility constraints. In particular, we focus on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks execution time and idle time duration. We study several problems in the framework of classic complexity and approximation for which the compatibility graph is bipartite (star, chain, \(\ldots \)). In such context, we design efficient polynomial-time approximation algorithms according to different parameters of the scheduling problem.


Bipartite Graph Idle Time Knapsack Problem Radio Pulse Constraint Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded by the regional council of Burgundy.


  1. 1.
    Caprara, A., Kellerer, H., Pferschy, U.: A PTAS for the multiple subset sum problem with different knapsack capacities. Inf. Process. Lett. 73(3–4), 111–118 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. Siam J. Optim. 11(2), 308–319 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple subset sum. J. Heuristics 9(2), 99–111 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Darties, B., Simonin, G., Giroudeau, R., König, J.-C.: Scheduling stretched coupled-tasks with compatibilities constraints: model, complexity and approximation results for some class of graphs. Report, February 2014Google Scholar
  5. 5.
    Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Edmonds, J.: Maximum matching and a polyhedron with \(0,1\) vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Simonin, G., Darties, B., Giroudeau, R., König, J.C.: Isomorphic coupled-task scheduling problem with compatibility constraints on a single processor. J. Sched. 14(5), 501–509 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  9. 9.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci. 66(2), 349–370 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    König, J.-C., Simonin, G., Giroudeau, R.: Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks. In: Project Management and Scheduling (2010)Google Scholar
  13. 13.
    Shapiro, R.D.: Scheduling coupled tasks. Naval Res. Logist. Q. 27, 477–481 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Benoit Darties
    • 1
  • Gilles Simonin
    • 2
  • Rodolphe Giroudeau
    • 3
  • Jean-Claude König
    • 3
  1. 1.LE2I-CNRS-UMR 6306-8DijonFrance
  2. 2.Insight Centre for Data AnalyticsUniversity College CorkCorkIreland
  3. 3.LIRMM-CNRS-UMR 5506-161MontpellierFrance

Personalised recommendations