Use of Graph Databases in Tourist Navigation Application

  • Anahid Basiri
  • Pouria Amirian
  • Adam Winstanley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8583)


Navigation services, such as car navigation services, are widely used nowadays. However current car navigation systems are not fully suitable for the navigational needs of tourists. In contrast with drivers, tourists are not constrained by road networks and can walk in places where vehicles are not allowed to move. As current turn-by-turn navigational instructions to be given to vehicle’s derivers are mostly based on street network-based algorithms, this way of navigating is not fully suitable for tourists as they do not only move on streets. In addition, Tourists want to see important feature of the area, no matter they take longer path rather than shortest. They want to get navigated through the most touristic path. In order to provide such tourist-specific navigation services, a landmark-based solution was considered. it calculates a route passing more landmarks. This may help user to visit attractive part of a place. It is possible to provide users with the navigational instructions landmark-by-landmark rather than turn-by-turn. In this application, a graph database is used because of having highly connected data and also need to remove the mapping layer between physical storage layer and application logic layer to have more availability and responsiveness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amirian, P., Alesheikh, A.A., Basiri, A.: Standard-based, interoperable services for accessing urban services data. Computer Environment and Urban Systems 34(4), 309–321 (2010)CrossRefGoogle Scholar
  2. 2.
    Amirian, P., Winstanley, A.C., Basiri, A.: Using Graph databases in LBS applications: Storing and Processing Navigational and Tracking data. In: Mobile Gehnt, Belgium (2013)Google Scholar
  3. 3.
    Basiri, A., Amirian, P., Winstanley, A.C.: The Use of Quick Response (QR) Codes in Landmark-Based Pedestrian Navigation. International Journal of Navigation and Observation (2014)Google Scholar
  4. 4.
    Basiri, A., Amirian, P., Winstanley, A.C., Kuntzsch, C., Sester, M.: Uncertainty han-dling in navigation services using rough and fuzzy set theory. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data, pp. 38–41 (2012)Google Scholar
  5. 5.
    Basiri, A., Winstanley, A.C., Amirian, P.: Landmark-based pedestrian navigation. In: 21st GIS Research UK (GISRUK) Conference, UK (2013)Google Scholar
  6. 6.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Gruber, R.: Bigtable: A distributed stor-age system for structured data. In: Seventh Symposium on Operating System Design and Implementation (2006)Google Scholar
  7. 7.
    Tom, A., Denis, M.: Referring to Landmark or Street Information in Route Directions: What Difference Does It Make? In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 362–374. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Elias, B.: Determination of Landmarks and Reliability Criteria for Landmarks. Technical Paper, ICA Commission on Map Generalization, 5th Workshop on Progress in Automated Map Generalization. IGN, Paris, France (2003)Google Scholar
  9. 9.
    Etienne, S., Séguinot, V.: Navigation by Dead Reckoning and Local Cues. Journal of Navigation 46, 364–370 (1993), doi:10.1017/S0373463300011802.CrossRefGoogle Scholar
  10. 10.
    Fang, Z., Li, Q., Zhang, X., Shaw, S.L.: A GIS data model for landmark-based pe-destrian navigation. International Journal of Geographical Information Science (2011), doi:10.1080/13658816.2011.615749Google Scholar
  11. 11.
    Fontaine, S., Denis, M.: The Production of Route Instructions in Underground and Urban Environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 83–94. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Fowler, M., Sadalage, P.: NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Addison-Wesley Publication (2012)Google Scholar
  13. 13.
    Gaisbauer, C., Frank, A.U.: Wayfinding Model for Pedestrian Navigation. In: The AGILE International Conference on Geographic Information Science, pp. 1–9 (2008)Google Scholar
  14. 14.
    Hecht, R., Jablonski, S.: NoSQL Evaluation A Use Case Oriented Survey. In: International Conference on Cloud and Service Computing, pp. 336–341 (2011)Google Scholar
  15. 15.
    Hansen, R., Wind, R., Jensen, C.S., Thomsen, B.: Seamless Indoor/Outdoor Positioning Handover for Location-Based Services in Streamspin. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 267–272 (2009)Google Scholar
  16. 16.
    Holm, S.: Hybrid ultrasound-RFID indoor positioning: Combining the best of both worlds. In: IEEE Int. Conf. RFID, Orlando, FL, pp. 155–162 (2009)Google Scholar
  17. 17.
    Hung, J.C.: The smart-travel system: utilising cloud services to aid traveller with personalised requirement. IJWGS 8(3), 279–303 (2012)CrossRefGoogle Scholar
  18. 18.
    Karimi, H.: Universal Navigation on Smartphones. Springer (2011) ISBN-10: 1441977406Google Scholar
  19. 19.
    Lee, J.K., Grejner-Brzezinska, D.A., Toth, C.: Network-based Collaborative Navigation in GPS-Denied Environment. Journal of Navigation 65, 445–457 (2012), doi:10.1017/S0373463312000069.CrossRefGoogle Scholar
  20. 20.
    Li, X., Wang, J., Li, T.: Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi- Sensor Data. Journal of Sensors 13(7), 9047–9069 (2013)CrossRefGoogle Scholar
  21. 21.
    Lynch, K.: The image of the city, p. 48. MIT Press (1960)Google Scholar
  22. 22.
    May, A.J., Ross, T., Bayer, S.H.: Incorporating Landmarks in Driver Navigation System Design: An Overview of Results from the REGIONAL Project. Journal of Navigation 58, 47–65 (2005), doi:10.1017/S0373463304003054.CrossRefGoogle Scholar
  23. 23.
    Michon, P.-E., Denis, M.: When and Why Are Visual Landmarks Used in Giving Directions? In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 292–305. Springer, Heidelberg (2001)Google Scholar
  24. 24.
    Millonig, A., Schechtner, K.: Developing Landmark-based Pedestrian Navigation Systems. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 196–202 (2005) 0-7803-9215-9/05Google Scholar
  25. 25.
    Pielot, M., Boll, S.: “In Fifty Metres Turn Left”: Why Turn-by-turn Instructions Fail Pedestrians, Haptic, Audio and Visual Interfaces for Maps and Location Based Services (2010)Google Scholar
  26. 26.
    Raubal, M., Winter, S.: Enriching Wayfinding Instructions with Local Landmarks. In: Egenhofer, M., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Redish, D.: Beyond the cognitive map: from place cells to episodic memory. MIT, Cambridge (1999)Google Scholar
  28. 28.
    Schechtner, M.K.: Developing Landmark-based Pedestrian Navigation Systems. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna (2005)Google Scholar
  29. 29.
    Siegel, W., White, S.H.: The Development of Spatial Representations of Large-scale Environments. In: Reese, H.W. (ed.) Advances in Child Development and Behaviour, vol. 10, pp. 9–55. Academic Press, New York (1975)Google Scholar
  30. 30.
    Schoier, G., Borruso, G.: Spatial Data Mining for Highlighting Hotspots in Personal Navigation Routes. IJDWM 8(3), 45–61 (2012)Google Scholar
  31. 31.
    Tiwari, S.: Professional NoSQL. Wrox Publication (2011)Google Scholar
  32. 32.
    Vepa, R.: Ambulatory Position Tracking of Prosthetic Limbs Using Multiple Satellite Aided Inertial Sensors and Adaptive Mixing. Journal of Navigation 64, 295–310 (2011), doi:10.1017/S0373463310000494CrossRefGoogle Scholar
  33. 33.
    Werner, S., Krieg-Brückner, B., Mallot, H., Schweizer, K., Freksa, C.: Spatial Cogni-tion: The Role of Landmark, Route and Survey Knowledge in Human and Robot Navigation. In: Jarke, M., Pasedach, K., Pohl, K. (eds.) Informatik aktuell, pp. 41–50. Springer, Berlin (1997)Google Scholar
  34. 34.
    Xiang, P., Hou, R., Zhou, Z.: Cache and consistency in NoSQL. In: 3rd IEEE International Conference on Computer Science and Information Technology, pp. 117–120 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anahid Basiri
    • 1
  • Pouria Amirian
    • 2
  • Adam Winstanley
    • 2
  1. 1.Nottingham Geospatial Institutethe University of NottinghamUK
  2. 2.Department of Computer ScienceNational University of IrelandMaynoothIreland

Personalised recommendations