Intelligent Systems for Monitoring and Prevention in Healthcare Information Systems

  • Fernando Marins
  • Luciana Cardoso
  • Filipe Portela
  • António Abelha
  • José Machado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


Nowadays the interoperability in Healthcare Information Systems (HIS) is a fundamental requirement. The Agency for Integration, Diffusion and Archive of Medical Information (AIDA) is an interoperability healthcare platform that ensures these demands and it is implemented in Centro Hospitalar do Porto (CHP), a major healthcare unit in Portugal. Therefore, the overall performance of CHP HIS depends on the success of AIDA functioning.

This paper presents monitoring and prevention systems implemented in the CHP, which aim to improve the system integrity and high availability. These systems allow the monitoring and the detection of situations conducive to failure in the AIDA main components: database, machines and intelligent agents. Through the monitoring systems, it was found that the database most critical period is between 11:00 and 12:00 and the resources are well balanced. The prevention systems detected abnormal situations that were reported to the administrators that took preventive actions, avoiding damage to AIDA workflow.


Healthcare Information Systems Interoperability Availability Monitoring Systems Preventing Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palazzo, L., Sernani, P., Claudi, A., Dolcini, G., Biancucci, G., Dragoni, A.F.: A multi-agent architecture for health information systems. In: International Workshop on Artificial Intelligence and NetMedicine, p. 41 (2013)Google Scholar
  2. 2.
    Reichertz, P.L.: Hospital information systems-past, present, future. International Journal of Medical Informatics 75(3-4), 282–299 (2006); Electronic Health Record, Healthcare Registers and Telemedicine and European Potential for Building Information Society in HealthcareCrossRefGoogle Scholar
  3. 3.
    Miranda, M., Salazar, M., Portela, F., Santos, M., Abelha, A., Neves, J., Machado, J.: Multi-agent systems for hl7 interoperability services. Procedia Technology 5, 725–733 (2012)CrossRefGoogle Scholar
  4. 4.
    Miranda, M., Duarte, J., Abelha, A., Machado, J., Neves, J.: Interoperability in healthcare. In: Proceedings of the European Simulation and Modelling Conference (ESM 2010), Belgium (2010)Google Scholar
  5. 5.
    Machado, J., Abelha, A., Novais, P., Neves, J., Neves, J.: Quality of service in healthcare units. International Journal of Computer Aided Engineering and Technology 2(4), 436–449 (2010)CrossRefGoogle Scholar
  6. 6.
    Duarte, J., Salazar, M., Quintas, C., Santos, M., Neves, J., Abelha, A., Machado, J.: Data quality evaluation of electronic health records in the hospital admission process. In: 2010 IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS), pp. 201–206 (August 2010)Google Scholar
  7. 7.
    Rodrigues, A.: Oracle 10g e 9i: Fundamentos Para Profissionais. FCA, Lisboa (2005)Google Scholar
  8. 8.
    Bertino, E., Sandhu, R.: Database security - concepts, approaches, and challenges. IEEE Transactions on Dependable and Secure Computing 2(1), 2–19 (2005)CrossRefGoogle Scholar
  9. 9.
    Kim, S., Cho, N., Lee, Y., Kang, S.H., Kim, T., Hwang, H., Mun, D.: Application of density-based outlier detection to database activity monitoring. Information Systems Frontiers, 1–11 (2010)Google Scholar
  10. 10.
    Drake, S., et al.: Architecture of Highly Available Databases. In: Malek, M., Reitenspiess, M., Kaiser, J. (eds.) ISAS 2004. LNCS, vol. 3335, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a pervasive approach for intelligent decision support in critical health care. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 233–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Devaney, G., Lead, W.: Guideline for the use of the modified early warning score (MEWS). Technical report, Outer North East London Community Services (2011)Google Scholar
  13. 13.
    Albino, A., Jacinto, V.: Implementação da escala de alerta precoce - EWS. Technical report, Centro Hospitalar do Barlavento Algarvio, EPE, Portimão (2010)Google Scholar
  14. 14.
    Boudec, J.: Performance Evaluation of Computer and Communication Systems. Computer and Communication Sciences. EPFL Press (2010)Google Scholar
  15. 15.
    Chan, I., et al.: Oracle database–performance tuning guide, 10g release 2(10.2). Redwood City, Oracle Corporation 474, B14211–01 (2005)Google Scholar
  16. 16.
    Dimitropoulos, X., Hurley, P., Kind, A., Stoecklin, M.P.: On the 95-percentile billing method. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 207–216. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Tereso, M., Bernardino, J.: Open source business intelligence tools for smes. In: 2011 6th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–4. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fernando Marins
    • 1
  • Luciana Cardoso
    • 1
  • Filipe Portela
    • 2
  • António Abelha
    • 1
  • José Machado
    • 1
  1. 1.CCTC, Department of InformaticsUniversity of MinhoBragaPortugal
  2. 2.Algoritmi, Department of Information SystemsUniversity of MinhoGuimarãesPortugal

Personalised recommendations