Modelling Impact of Morphological Urban Structure and Cognitive Behaviour on Pedestrian Flows

  • Marija Bezbradica
  • Heather J. Ruskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8582)

Abstract

A novel, discrete space-time model of pedestrian behaviour in real urban networks is presented. An agent-based approach is used to define characteristics of individual pedestrians, based on spatial awareness and cognition theories, combined with preferential choices of different social groups. Behaviour patterns are considered incorporating rules of movement along pedestrian routes and for intermediate decision and conflict points. The model utilises dynamic volunteered geographic information system data allowing analysis of arbitrary city networks and comparison of the effect of grid structure and amenity distribution. As an example, two distinctive social groups are considered, namely ’directed’ and ’leisure’, and their interaction, together with the way in which flow congestion and changes in network morphology affect route choice in central London areas. The resulting stress and flow characteristics of the urban network simulations as well as the impact on individual agent paths and travel times, are discussed.

Keywords

GIS agent-based modelling urban spatial-temporal modelling pedestrian behaviour geovisualisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carstens, R.L., Ring, S.L.: Pedestrian capacities of shelter entrances. Traffic Engineering 41, 38–43 (1970)Google Scholar
  2. 2.
    O’Flaherty, C.A., Parkinson, M.H.: Movement on a city centre footway. Traffic Engineering and Control 13, 434–438 (1972)Google Scholar
  3. 3.
    Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior 32, 1–75 (2003)CrossRefGoogle Scholar
  4. 4.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications 312(1-2), 260–276 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. AI & Society 22(2), 113–132 (2007)CrossRefGoogle Scholar
  6. 6.
    Augustijn-Beckers, E.W., Flacke, J., Retsios, B.: Investigating the effect of different pre-evacuation behavior and exit choice strategies using agent-based modeling. Procedia Engineering 3, 23–35 (2010)CrossRefGoogle Scholar
  7. 7.
    Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for Evacuation Planning: A Summary of Results. Department of Computer Science and Engineering, University of Minnesota (2005)Google Scholar
  8. 8.
    Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences 108(17), 6884–6888 (2011)CrossRefGoogle Scholar
  9. 9.
    Gilbert, N., Troitzsch, K.G.: Simulation of the social scientist. Open University Press (1999)Google Scholar
  10. 10.
    Fiedrich, F., Burghardt, P.: Agent-based Systems for Disaster Management. Communications of the ACM 50(3), 41–42 (2007)CrossRefGoogle Scholar
  11. 11.
    Schelling, T.C.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1, 143–186 (1971)CrossRefGoogle Scholar
  12. 12.
    Bonabeau, E.: Agent-Based Modelling: Methods and Techniques for Simulating Human Systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 99(3), 7280–7287 (2002)CrossRefGoogle Scholar
  13. 13.
    Castle, C.J.E., Crooks, A.T.: Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations. CASA Working Papers, Centre for Advanced Spatial Analysis, UCL (2006)Google Scholar
  14. 14.
    Cetin, N., Nagel, K., Raney, B., Voellmy, A.: Large-scale multi-agent transportation simulations. Computer Physics Communications 147, 559–564 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Henein, C.M., White, T.: Agent-Based Modelling of Forces in Crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 173–184. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Crooks, A.T., Castle, C.J.E.: The Integration of Agent-Based Modelling and Geographical Information for Geospatial Simulation. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 219–251. Springer, Netherlands (2012)CrossRefGoogle Scholar
  17. 17.
    Longley, P., Batty, M.: Advanced Spatial Analysis: The CASA book of GIS. ESRI Press, Redlands (2003)Google Scholar
  18. 18.
    Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MITPress, Mass (2005)Google Scholar
  19. 19.
    Andrew, T.C., Sarah, W.: GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems 41, 100–111 (2013)CrossRefGoogle Scholar
  20. 20.
    Batty, M.: Predicting where we walk. Nature 388, 19–20 (1997)CrossRefGoogle Scholar
  21. 21.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE 5(4), e10047 (2010)Google Scholar
  22. 22.
    Duckham, M., Kulik, L.: “Simplest” paths: Automated route selection for navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Hillier, B., Iida, S.: Network and Psychological Effects in Urban Movement. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 475–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12(3), 242–255 (2009)CrossRefGoogle Scholar
  25. 25.
    Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems 32(6), 417–430 (2008)CrossRefGoogle Scholar
  26. 26.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, Berlin (2009)CrossRefGoogle Scholar
  27. 27.
    Schwandt, H., Huth, F., Bärwolff, G., Berres, S.: A Multiphase Convection-Diffusion Model for the Simulation of Interacting Pedestrian Flows. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 17–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Antonini, G., Bierlaire, M., Weber, M.: Discrete choice models of pedestrian walking behavior. Transportation Research Part B: Methodological 40(8), 667–687 (2006)CrossRefGoogle Scholar
  29. 29.
    Blecic, I., Cecchini, A., Congiu, T., Pazzola, M., Trunfio, G.: A Design and Planning Support System for Walkability and Pedestrian Accessibility. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part IV. LNCS, vol. 7974, pp. 284–293. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28(3), 361–384 (2001)CrossRefGoogle Scholar
  31. 31.
    Oberhagemann, D.: Static and Dynamic Crowd Densities at Major Public Events. Technical Report vfdb TB 13-01 (2012)Google Scholar
  32. 32.
    Design Manual for Roads and Bridges. Pavement Design and Maintenance. Published by the Highways Agency 7, Section 2(5) (2001)Google Scholar
  33. 33.
    Kowald, M., Frei, A., Hackney, J.K., Illenberger, J., Axhausen, K.W.: Collecting data on leisure travel: The link between leisure contacts and social interactions. Procedia - Social and Behavioral Sciences 4, 38–48 (2010)CrossRefGoogle Scholar
  34. 34.
    Haklay, M.: How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design 37, 682–703 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marija Bezbradica
    • 1
  • Heather J. Ruskin
    • 1
  1. 1.Centre for Scientific Computing Research and Complex Systems Modelling (Sci-Sym), School of ComputingDublin City UniversityDublinIreland

Personalised recommendations