Practical Implementation of Computational Tactical Metrics for the Football Game

Towards an Augmenting Perception of Coaches and Sport Analysts
  • Filipe Manuel Clemente
  • Micael Santos Couceiro
  • Fernando Manuel Lourenço Martins
  • Rui Sousa Mendes
  • António José Figueiredo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)


Novel estimation, detection and identification techniques have been recently applied on sports, providing the cartesian positional information of players over time. This information has been seen as vital within sports science’s literature, so as to propose new computational tactical metrics that may allow to inspect the spatio-temporal relationship between teammates. Such technological approaches can improve the understanding of the collective match, providing to coaches and analysts a real-time augmented perception of the game. In spite of this, this study aims to identify, and computational describe, the most promising tactical metrics developed over the last few years and characterize their practical applications. Moreover, a technological approach that integrates these metrics will be discussed, focusing on the data retrieval, processing and visualization. Therefore, concepts such as Augmented Reality, Cloud Computing and Human-computer Interaction are considered to give the first steps toward a football game analysis system.


Practical Implementations Match Analysis Football Tactical Metrics Augmented Reality Tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clemente, F.M., Couceiro, M.S., Martins, F.M., Mendes, R., Figueiredo, A.J.: Measuring tactical behaviour using technological metrics: Case study of a football game. Int. J. Sports Sci. Coaching 8, 723–739 (2013)CrossRefGoogle Scholar
  2. 2.
    Carling, C., Williams, A.M., Reilly, T.: Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance. Taylor & Francis Group, London (2005)CrossRefGoogle Scholar
  3. 3.
    Clemente, F.M., Couceiro, M.S., Martins, F.M., Mendes, R.: An Online Tactical Metrics Applied to Football Game. Res. J. Appl. Sci. Eng. Tech. 5, 1700–1719 (2013)Google Scholar
  4. 4.
    Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.: Augmented reality technologies, systems and applications. Multimed. Tools Appl. 51, 341–377 (2011)CrossRefGoogle Scholar
  5. 5.
    Frencken, W., Lemmink, K., Delleman, N., Visscher, C.: Oscillations of centroid position and surface area of football teams in small-sided games. Eur. J. Sport Sci. 11, 215–223 (2011)CrossRefGoogle Scholar
  6. 6.
    Bourbousson, J., Sève, C., McGarry, T.: Space-time coordination dynamics in basketball: Part 2 The interaction between the two teams. J. Sport. Sci. 28, 349–358 (2010)CrossRefGoogle Scholar
  7. 7.
    Vilar, L., Araújo, D., Davids, K., Bar-Yam, Y.: Science of winning football: emergent pattern-forming dynamics in association football. J. Syst. Sci. Complex. 26, 73–84 (2013)CrossRefGoogle Scholar
  8. 8.
    Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Nearest-Neighbor Interpolation: Multivariate interpolation, dimension, interpolation. Betascript Publishing, United States (2010)Google Scholar
  9. 9.
    Clemente, F.M., Couceiro, M.S., Martins, F.M.L., Mendes, R., Figueiredo, A.J.: Measuring Collective Behaviour in Football Teams: Inspecting the impact of each half of the match on ball possession. Int. J. Perform. Anal. Sport 13, 678–689 (2013)Google Scholar
  10. 10.
    Couceiro, M.S., Clemente, F.M., Martins, F.M.L.: Analysis of football player’s motion in view of fractional calculus. Cent. Eur. J. Phys. 11, 714–723 (2013)CrossRefGoogle Scholar
  11. 11.
    Carling, C., Bloomfield, J., Nelsen, L., Reilly, T.: The role of motion analysis in elite soccer. Sports Med. 38, 839–862 (2008)CrossRefGoogle Scholar
  12. 12.
    Santiago, C.B., Sousa, A., Reis, L.P., Estriga, M.L.: Real time colour based player tracking in indoor sports. In: Computational Vision and Medical Image Processing, pp. 17–35. Springer, Netherlands (2011)CrossRefGoogle Scholar
  13. 13.
    Dearden, A., Demiris, Y., Grau, O.: Tracking football player movement from a single moving camera using particle filters. In: Proceedings of the 3rd European Conference on Visual Media Production (CVMP-2006), London, pp. 29–37 (2006)Google Scholar
  14. 14.
    van Krevelen, D.W.F., Poelman, R.: A Survey of Augmented Reality Technologies, Applications and Limitations. Int. J. Virt. Real. 9, 1–20 (2010)Google Scholar
  15. 15.
    Milgram, P., Kishino, A.F.: Taxonomy of mixed reality visual displays. IEICE Transactions Info. Syst. 77, 1321–1329 (1994)Google Scholar
  16. 16.
    Carmigniani, J., Furht, B.: Augmented Reality: An Overview. In: Furht, B. (ed.) Handbook of Augmented Reality, pp. 3–46. Springer, New York (2011)CrossRefGoogle Scholar
  17. 17.
    Behringer, R., Tam, C., MCGee, J., Sundareswaran, S., Vassiliou, M.: A wearable augmented reality testbed for navigation and control, built solely with commercial-off-the-shelf (COTS) hardware. In: Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), Munich, Germany, pp. 12–19 (2000)Google Scholar
  18. 18.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Ser. Appl. 1, 7–18 (2010)CrossRefGoogle Scholar
  19. 19.
    Hong-jiang, W., Hai-yan, Z., Jing, Z.: Application of the cloud computing technology in the sports training. In: International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, Hubei Province of China, pp. 162–165 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Filipe Manuel Clemente
    • 1
    • 2
    • 3
  • Micael Santos Couceiro
    • 4
    • 5
  • Fernando Manuel Lourenço Martins
    • 1
    • 2
  • Rui Sousa Mendes
    • 2
  • António José Figueiredo
    • 3
    • 6
  1. 1.Instituto de TelecomunicaçõesDelegação da CovilhãPortugal
  2. 2.Polytechnic Institute of Coimbra, ESEC, DEPortugal
  3. 3.Faculty of Sport Sciences and Physical EducationUniversity of CoimbraPortugal
  4. 4.Artificial Perception for Intelligent Systems and Robotics (AP4ISR), Institute of Systems and Robotics (ISR)University of CoimbraPortugal
  5. 5.Ingeniarius, Lda.MealhadaPortugal
  6. 6.CIDAF, Faculty of Sport Sciences and Physical EducationUniversity of CoimbraPortugal

Personalised recommendations