Zeros of Orthogonal Polynomials Generated by the Geronimus Perturbation of Measures

  • Amílcar Branquinho
  • Edmundo J. Huertas
  • Fernando R. Rafaeli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)


This paper deals with monic orthogonal polynomial sequences (MOPS in short) generated by a Geronimus canonical spectral transformation of a positive Borel measure μ, i.e., (x − c)− 1 (x) + (x − c), for some free parameter \(N\in{\rm{I\!R}}_{+}\) and shift c. We analyze the behavior of the corresponding MOPS. In particular, we obtain such a behavior when the mass N tends to infinity as well as we characterize the precise values of N such the smallest (respectively, the largest) zero of these MOPS is located outside the support of the original measure μ. When  μ is semi-classical, we obtain the ladder operators and the second order linear differential equation satisfied by the Geronimus perturbed MOPS, and we also give an electrostatic interpretation of the zero distribution in terms of a logarithmic potential interaction under the action of an external field. We analyze such an equilibrium problem when the mass point of the perturbation c is located outside the support of μ.


Orthogonal polynomials Canonical spectral transformations of measures Zeros Monotonicity Laguerre polynomials Asymptotic behavior Electrostatic interpretation Logarithmic potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrios, D., Branquinho, A.: Complex high order Toda and Volterra lattices. J. Difference Equ. Appl. 15(2), 197–213 (2009)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bracciali, C.F., Dimitrov, D.K., Sri Ranga, A.: Chain sequences and symmetric generalized orthogonal polynomials. J. Comput. Appl. Math. 143, 95–106 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Branquinho, A., Marcellán, F.: Generating new classes of orthogonal polynomials. Int. J. Math. Math. Sci. 19(4), 643–656 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bueno, M.I., Deaño, A., Tavernetti, E.: A new algorithm for computing the Geronimus transformation with large shifts. Numer. Alg. 54, 101–139 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bueno, M.I., Marcellán, F.: Darboux tranformations and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Mathematics and its Applications Series. Gordon and Breach, New York (1978)zbMATHGoogle Scholar
  7. 7.
    Derevyagin, M., Marcellán, F.: A note on the Geronimus transformation and Sobolev orthogonal polynomials. Numer. Algorithms, 1–17 (2013), doi: 10.1007/s11075-013-9788-6Google Scholar
  8. 8.
    Dimitrov, D.K., Mello, M.V., Rafaeli, F.R.: Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials. Appl. Numer. Math. 60, 263–276 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dini, J., Maroni, P.: La multiplication d’une forme linéaire par une forme rationnelle. Application aux polynômes de Laguerre-Hahn. Ann. Polon. Math. 52, 175–185 (1990)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation Series. Oxford University Press, New York (2004)Google Scholar
  11. 11.
    Geronimus, Y.L.: On the polynomials orthogonal with respect to a given number sequence and a theorem. In: Hahn, W., Nauk, I.A. (eds.), vol. 4, pp. 215–228 (1940) (in Russian)Google Scholar
  12. 12.
    Geronimus, Y.L.: On the polynomials orthogonal with respect to a given number sequence. Zap. Mat. Otdel. Khar’kov. Univers. i NII Mat. i Mehan. 17, 3–18 (1940) (in Russian)Google Scholar
  13. 13.
    Huertas, E.J., Marcellán, F., Rafaeli, F.R.: Zeros of orthogonal polynomials generated by canonical perturbations of measures. Appl. Math. Comput. 218(13), 7109–7127 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Ismail, M.E.H.: More on electrostatic models for zeros of orthogonal polynomials. Numer. Funct. Anal. Optimiz. 21, 191–204 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  16. 16.
    Maroni, P.: Sur la suite de polynômes orthogonaux associée à la forme u = δ c + λ(x − c)− 1 L. Period. Math. Hungar. 21(3), 223–248 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Brezinski, C., et al. (eds.) Orth. Pol. and Their Applications. Annals. Comput. Appl. Math., vol. 9, pp. 95–130 (1991)Google Scholar
  18. 18.
    Shohat, J.: On mechanical quadratures, in particular, with positive coefficients. Trans. Amer. Math. Soc. 42(3), 461–496 (1937)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Spiridonov, V., Zhedanov, A.: Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials. Methods Appl. Anal. 2(4), 369–398 (1995)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Spiridonov, V., Zhedanov, A.: Discrete-time Volterra chain and classical orthogonal polynomials. J. Phys. A: Math. Gen. 30, 8727–8737 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Szegő, G.: Orthogonal Polynomials, 4th edn., vol. 23. Amer. Math. Soc. Coll. Publ., Providence RI, (1975)Google Scholar
  22. 22.
    Uvarov, V.B.: The connection between systems of polynomials orthogonal with respect to different distribution functions. USSR Compt. Math. Phys. 9(6), 25–36 (1969)CrossRefGoogle Scholar
  23. 23.
    Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–83 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yoon, G.J.: Darboux transforms and orthogonal polynomials. Bull. Korean Math. Soc. 39, 359–376 (2002)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amílcar Branquinho
    • 1
  • Edmundo J. Huertas
    • 1
  • Fernando R. Rafaeli
    • 2
  1. 1.CMUC and Departamento de Matemática (FCTUC)University of CoimbraCoimbraPortugal
  2. 2.Faculdade de MatemáticaUniversidade Federal de Uberlândia (UFU)UberlândiaBrazil

Personalised recommendations