A Grid Empowered Virtual Versus Real Experiment for the Barrierless Li + FH → LiF + H Reaction

  • Antonio Laganà
  • Sergio Rampino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)


The capability of the so called Grid Empowered Molecular Simulator GEMS of enabling fully ab initio virtual experiments (based on rigorous theoretical and computational procedures) has allowed us to parallel crossed beam experimental measurements with values obtained from first principles with no intermediation of empirical models. In this way a quantitative reproduction of the decrease with collision energy of the measured reactive integral cross section of the Li + HF fluorine exchange process for energy values lower than 0.1 eV was obtained. This quantitatively confirmed the outcomes of previous approximate quantum calculations performed on an ab initio potential energy surface fitted to a polynomial in bond order coordinates while disagreeing with the previous outcomes of quantum calculations performed on a different ab initio fitted potential energy surface.


virtual experiment quantum dynamics reactive scattering state specific reaction probability cross section 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laganá, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Costantini, A., Gervasi, O., Laganà, A.: A fault tolerant workflow for CPU demanding calculations. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 387–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Manuali, C., Laganà, A.: GRIF: A New Collaborative Framework for a Web Service Approach to Grid Empowered Calculations. Future Generation of Computer Systems 27, 315–318 (2011)CrossRefGoogle Scholar
  4. 4.
    Manuali, C., Rampino, S., Laganà, A.: GRIF: A Grid Framework for a Web Service Approach to Reactive Scattering. Computer Physics Communications 181, 1179–1185 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Manuali, C., Laganà, A.: A Grid Credit System Empowering Virtual Research Communities Sustainability. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 397–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Costantini, A., Gervasi, O., Manuali, C., Faginas Lago, N., Rampino, S., Laganà, A.: COMPCHEM: progress towards GEMS a Grid Empowered Molecular Simulator and beyond. Journal of Grid Computing 8, 571–586 (2010)CrossRefGoogle Scholar
  7. 7.
    Rampino, S., Monari, A., Rossi, E., Evangelisti, S., Laganà, A.: A priori modeling of chemical reactions on computational grid platforms: Workflows and data models. Chemical Physics 398, 192–198 (2012)CrossRefGoogle Scholar
  8. 8.
    Laganà, A., Garcia, E., Paladini, A., Casavecchia, P., Balucani, N.: The last mile of molecular reaction dynamics virtual experiments: the case of the OH (N= 1–10) + CO (j = 0–3) → H + CO2 reaction. Faraday Discussion of Chemical Society 157, 415–436 (2012)CrossRefGoogle Scholar
  9. 9.
    Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A.: An extension of the molecular simulator GEMS to calculate the signal of crossed beam experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 453–465. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Garcia, E., Saracibar, A., Laganà, A.: On the anomaly of the quasiclassical product distributions of the OH + CO → H + CO2 reaction. Theoretical Chemistry Accounts 128, 727–734 (2011)CrossRefGoogle Scholar
  11. 11.
    Becker, H., Casavecchia, P., Tiedman, P.W., Valentini, J.J., Lee, Y.T.: Study of the reaction dynamics of Li + HF, HCl by the crossed molecular beams method. Journal of Chemical Physics 73, 2833–2850 (1980)CrossRefGoogle Scholar
  12. 12.
    Höbel, O., Menéndez, M., Loesch, H.J.: The translational energy dependence of the integral reaction cross section for Li + HF (v = 0) → LiF + H. Physical Chemistry Chemical Physics 3, 3633–3637 (2001)CrossRefGoogle Scholar
  13. 13.
    Höbel, O., Bobbenkamp, R., Paladini, A., Russo, A., Loesch, H.J.: Effect of translational energy on the reaction Li + HF (v = 0) → LiF + H. Physical Chemistry Chemical Physics 6, 2198–2204 (2004)CrossRefGoogle Scholar
  14. 14.
    Höbel, O.: Ph.D. thesis, Universitat Bielefeld (2001)Google Scholar
  15. 15.
    Bobbenkamp, R., Loesch, H.J., Mudrich, M., Stienkemeier, F.: The excitation function for Li+HF → LiF+H at collision energies below 80 meV. Journal of Chemical Physics 135, 204306 (2011)CrossRefGoogle Scholar
  16. 16.
    Chen, M., Schaefer, H.: Potential energy surface for the Li + HF → LiF + H reaction. Journal of Chemical Physics 72, 4376–4393 (1980)CrossRefGoogle Scholar
  17. 17.
    Alvarino, J.M., Casavecchia, P., Gervasi, O., Laganà, A.: A quasiclassical trajectory test for a potential energy surface of the Li + HF reaction. Journal of Chemical Physics 77, 6341–6342 (1982)CrossRefGoogle Scholar
  18. 18.
    Garcia, E., Laganà, A.: A fit of the potential energy surface of the Li + HF system. Molecular Physics 52, 1115–1124 (1984)CrossRefGoogle Scholar
  19. 19.
    Carter, S., Murrell, J.: Analytical potentials for triatomic molecules. Molecular Physics 41, 567–581 (1980)CrossRefGoogle Scholar
  20. 20.
    Palmieri, P., Laganà, A.: An accurate evaluation of the stationary points of the LiFH potential energy surface. Journal of Chemical Physics 91, 7303–7305 (1989)CrossRefGoogle Scholar
  21. 21.
    Laganà, A., Gervasi, O., Garcia, E.: A bond order LiFH potential energy surface for 3D quantum-mechanical calculations. Chemical Physics Letters 143, 174–180 (1988)CrossRefGoogle Scholar
  22. 22.
    Alvarino, J.M., Hernandez, M.L., Garcia, E., Laganà, A.: An improvement of the Li + HF PES based on a 3D quasiclassical trajectory test. Journal of Chemical Physics 84, 3059–3067 (1986)CrossRefGoogle Scholar
  23. 23.
    Laganà, A., Pack, R., Parker, G.: On the transition state of the Li + HF reaction. Faraday Discussion of Chemical Society 91, 386–387 (1991)Google Scholar
  24. 24.
    Parker, G., Laganà, A., Crocchianti, S.: A detailed three-dimensional quantum study of the Li+FH reaction. Journal of Chemical Physics 102, 1238–1250 (1995)CrossRefGoogle Scholar
  25. 25.
    Laganà, A., Ochoa de Aspuru, G., Aguilar, A., Gimenez, X., Lucas, J.M.: Threshold effects and reaction barrier in the Li + FH reaction and its isotopic variants. Journal of Physical Chemistry 199, 11696–11700 (1995)CrossRefGoogle Scholar
  26. 26.
    Piermarini, V., Crocchianti, S., Laganà, A.: Calculated versus Measured Cross Section: the Li + HF Reaction. Journal of Computational Methods in Science and Engeneering 2, 361–368 (2002)zbMATHGoogle Scholar
  27. 27.
    Laganá, A., Crocchianti, S., Piermarini, V.: Towards a Full Dimensional Exact Quantum Calculation of the Li + HF Reactive Cross Section. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 422–431. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Laganà, A., Garcia, E., Gervasi, O.: Improved infinite order sudden cross sections for the Li+HF reaction. Journal of Chemical Physics 89, 7238–7241 (1988)CrossRefGoogle Scholar
  29. 29.
    Baer, M., Garcia, E., Laganà, A., Gervasi, O.: An approximate three-dimensional quantum-mechanical study of the Li + HF → LiF + H reaction. Chemical Physics Letters 158, 362–368 (1989)CrossRefGoogle Scholar
  30. 30.
    Laganà, A., Gimenez, X., Garcia, E., Gervasi, O.: Parallel calculations of approximate 3D quantum cross sections: the Li + HF reaction. Chemical Physics Letters 176, 280–286 (1991)CrossRefGoogle Scholar
  31. 31.
    Baer, M., Loesch, H.J., Werner, H.J., Last, I.: Integral and differential cross sections for the Li + HF → LiF + H process. A comparison between j z quantum mechanical and experimental results. Chemical Physics Letters 219, 372–378 (1994)CrossRefGoogle Scholar
  32. 32.
    Baer, M., Last, I., Loesch, H.J.: Three-dimensional quantum mechanical study of the Li + HF → LiF + H process: Calculation of integral and differential cross sections. Journal of Chemical Physics 101, 9648–9662 (1994)CrossRefGoogle Scholar
  33. 33.
    Balint-Kurti, G.G., Gögtas, F., Mort, S., Offer, A., Laganà, A., Gervasi, O.: A comparison of time-dependent and time-independent quantum reactive scattering Li + HF → LiF + H model calculations. Journal of Chemical Physics 99, 9567–9584 (1993)CrossRefGoogle Scholar
  34. 34.
    Gögtas, F., Balint-Kurti, G.G., Offer, A.: Quantum mechanical three-dimensional wavepacket study of the Li + HF → LiF + H reaction. Journal of Chemical Physics 104, 7927–7939 (1996)CrossRefGoogle Scholar
  35. 35.
    Parker, G., Pack, R., Laganà, A.: Accurate 3D quantum reactive probabilities of Li + FH. Chemical Physics Letters 202, 75–81 (1993)CrossRefGoogle Scholar
  36. 36.
    Laganà, A., Pack, R., Parker, G.: Li + FH reactive cross sections from J=0 accurate quantum reactivity. Journal of Chemical Physics 99, 2269–2270 (1993)CrossRefGoogle Scholar
  37. 37.
    Laganà, A., Bolloni, A., Crocchianti, S.: Quantum isotopic effects and reaction mechanisms: the Li + HF reaction. Physical Chemistry Chemical Physics 2, 535–540 (2000)CrossRefGoogle Scholar
  38. 38.
    Laganà, A., Bolloni, A., Crocchianti, S., Parker, G.: On the effect of increasing the total angular momentum on Li + HF reactivity. Chemical Physics Letters 324, 466–474 (2000)CrossRefGoogle Scholar
  39. 39.
    Aguado, A., Paniagua, M., Lara, M., Roncero, O.: Quantum study of the Li + HF → LiF + H reaction. Journal of Chemical Physics 107, 10085–10095 (1997)CrossRefGoogle Scholar
  40. 40.
    Jasper, A., Hack, M., Truhlar, D., Piecuch, P.: Coupled quasidiabatic potential energy surfaces for LiFH. Journal of Chemical Physics 116, 8353–8366 (2002)CrossRefGoogle Scholar
  41. 41.
    Bobbenkamp, R., Paladini, A., Russo, A., Loesch, H., Menendez, M., Verdasco, E., Aoiz, F.J., Werner, H.J.: Effect of rotational energy on the reaction Li + HF(v = 0,j) → LiF + H: An experimental and computational study. Journal of Chemical Physics 122, 244304 (2005)CrossRefGoogle Scholar
  42. 42.
    Aguado, A., Paniagua, M., Werner, H.J.: unpublishedGoogle Scholar
  43. 43.
    Lara, M., Aguado, A., Roncero, O., Paniagua, M.: Quantum stereodynamics of the Li + HF(v, j) reactive collision for different initial states of the reagent. Journal of Chemical Physics 109, 9391–9400 (1998)CrossRefGoogle Scholar
  44. 44.
    Zanchet, A., Roncero, O., Gonzalez-Lezana, T., Rodriguez-Lopez, A., Aguado, A., Sanz-Sanz, C., Gomez-Carrasco, S.: Differential Cross Sections and Product Rotational Polarization in A + BC Reactions Using Wave Packet Methods: H +  + D2 and Li + HF Examples. Journal of Physical Chemistry A 113, 14488–14501 (2009)CrossRefGoogle Scholar
  45. 45.
    Skouteris, D., Castillo, J.F., Manolopoulos, D.E.: ABC: a quantum reactive scattering program. Computer Physics Communications 133, 128–135 (2000)CrossRefzbMATHGoogle Scholar
  46. 46.
    Skouteris, D., Costantini, A., Laganà, A., Sipos, G., Balaskó, Á., Kacsuk, P.: Implementation of the ABC quantum mechanical reactive scattering program on the EGEE grid platform. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1108–1120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  47. 47.
    Aoiz, F.J., Sáez-Rábanos, V., Martínez-Haya, B., González-Lezana, T.: Quasiclassical determination of reaction probabilities as a function of the total angular momentum. Journal of Chemical Physics 123, 094101 (2005)CrossRefGoogle Scholar
  48. 48.
    Bowman, J.M.: Reduced dimensionality theory of quantum reactive scattering. Journal of Physical Chemistry 95, 4960–4968 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonio Laganà
    • 1
  • Sergio Rampino
    • 2
  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItalia
  2. 2.Istituto di Scienze e Tecnologie Molecolari Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItalia

Personalised recommendations