Advertisement

Symmetric Angular Momentum Coupling, the Quantum Volume Operator and the 7-spin Network: A Computational Perspective

  • Dimitri Marinelli
  • Annalisa Marzuoli
  • Vincenzo Aquilanti
  • Roger W. Anderson
  • Ana Carla P. Bitencourt
  • Mirco Ragni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)

Abstract

A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner’s 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.

Keywords

Angular Momentum Volume Operator Projective Geometry Semiclassical Limit Spin Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. J. Phys. A: Math. Theor. 46, 175303 (2013), arXiv:1301.1949v1 [math-ph]CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aquilanti, V., Marinelli, D., Marzuoli, A.: Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials. J. Phys.: Conf. Series 482, 012001 (2014), arXiv:1401.3591v1 [quant-ph]Google Scholar
  3. 3.
    Chakrabarti, A.: On the coupling of 3 angular momenta. Ann. Inst. H. Poincaré Sect. A 1, 301–327 (1964)MATHGoogle Scholar
  4. 4.
    Lévy-Leblond, J.M., Lévy-Nahas, M.: Symmetrical Coupling of Three Angular Momenta. J. Math. Phys. 6(9), 1372–1380 (1965)CrossRefMATHGoogle Scholar
  5. 5.
    Carbone, G., Carfora, M., Marzuoli, A.: Quantum states of elementary three-geometry. Classical Quant. Grav. 19, 3761 (2002), arXiv:gr-qc/0112043CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Granovskii, Y., Lutzenko, I., Zhedanov, A.: Mutual integrability, quadratic algebras, and dynamical symmetry. Annals of Physics 217(1), 1–20 (1992)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Genest, V., Vinet, L., Zhedanov, A.: The equitable racah algebra from three su(1,1) algebras. J. Phys. A: Math. Theor. 47, 025203 (2014), arXiv:1309.3540 [math-ph]CrossRefMathSciNetGoogle Scholar
  8. 8.
    Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra Appl. 30, 149–203 (2001), arXiv:math/0406555 [math.RA]CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch, F., et al. (eds.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North-Holland, Amsterdam (1968)Google Scholar
  10. 10.
    Neville, D.E.: Volume operator for spin networks with planar or cylindrical symmetry. Phys. Rev. D 73(12), 124004 (2006), arXiv:gr-qc/0511005CrossRefMathSciNetGoogle Scholar
  11. 11.
    Neville, D.E.: Volume operator for singly polarized gravity waves with planar or cylindrical symmetry. Phys. Rev. D 73, 124005 (2006), arXiv:gr-qc/0511006CrossRefMathSciNetGoogle Scholar
  12. 12.
    Neville, D.E.: A technique for solving recurrence relations approximately and its application to the 3-J and 6-J symbols. J. Math. Phys. 12(12), 2438–2453 (1971)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable (Scientific Computation). Springer (October 1991)Google Scholar
  14. 14.
    Schulten, K., Gordon, R.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Schulten, K., Gordon, R.: Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta. J. Math. Phys. 16, 1971–1988 (1975)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ragni, M., Bitencourt, A., da S. Ferreira, C., Aquilanti, V., Anderson, R., Littlejohn, R.: Exact computation and asymptotic approximation of 6j symbols. illustration of their semiclassical limits. Int. J. Quantum Chem. (110), 731–742 (2010)Google Scholar
  17. 17.
    Littlejohn, R.G., Yu, L.: Uniform semiclassical approximation for the Wigner 6j-symbol in terms of rotation matrices. J. Phys. Chem. A 113, 14904–14922 (2009), arXiv:0905.4240 [math-ph]CrossRefGoogle Scholar
  18. 18.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner 3j -symbol. J. Phys. A 40(21), 5637–5674 (2007), arXiv:quant-ph/0703104CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Fano, U., Racah, G.: Irreducible tensorial sets, 1st edn. Pure and applied physics, vol. 4. Academic Press (1959)Google Scholar
  20. 20.
    de, B., Robinson, G.: Group Representations and Geometry. J. Math. Phys. 11(12), 3428–3432 (1970)CrossRefMATHGoogle Scholar
  21. 21.
    Judd, B.: Angular-momentum theory and projective geometry. Found. Phys. 13(1), 51–59 (1983)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Biedenharn, L.C., Louck, J.D.: The Racah–Wigner Algebra in Quantum Theory. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 9. Addison–Wesley Publ. Co., Reading (1981)Google Scholar
  23. 23.
    Labarthe, J.J.: Generating functions for the coupling-recoupling coefficients of su(2). J. Phys. A 8(10), 1543 (1975)CrossRefGoogle Scholar
  24. 24.
    Labarthe, J.J.: The hidden angular momenta of Racah and 3n − j coefficients. J. Phys. A 31, 8689 (1998)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Labarthe, J.J.: The hidden angular momenta for the coupling-recoupling coefficients of su(2). J. Phys. A 33, 763 (2000)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: Classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and hamiltonian dynamics. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Ragni, M., Littlejohn, R.G., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W.: The screen representation of spin networks: Images of 6j symbols and semiclassical features. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 60–72. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Aquilanti, V., Coletti, C.: 3nj-symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Letters 344, 601–611 (2001)CrossRefGoogle Scholar
  30. 30.
    Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)CrossRefGoogle Scholar
  31. 31.
    Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113, 15106–15117 (2009), arXiv:1001.4386 [quant-ph]CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dimitri Marinelli
    • 1
  • Annalisa Marzuoli
    • 2
    • 3
  • Vincenzo Aquilanti
    • 4
    • 5
  • Roger W. Anderson
    • 6
  • Ana Carla P. Bitencourt
    • 7
  • Mirco Ragni
    • 7
  1. 1.Dipartimento di FisicaUniversità degli Studi di PaviaItaly
  2. 2.INFNSezione di PaviaItaly
  3. 3.Dipartimento di Matematica “F Casorati”Università degli Studi di PaviaItaly
  4. 4.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaItaly
  5. 5.Instituto de FísicaUniversidade Federal da BahiaBrasil
  6. 6.Department of ChemistryUniversity of CaliforniaSanta CruzU.S.A.
  7. 7.Departamento de FísicaUniversidade Estadual de Feira de SantanaBrazil

Personalised recommendations