Reasoning about Space and Time: Moving towards a Theory of Granularities

  • João Moura Pires
  • Ricardo Almeida Silva
  • Maribel Yasmina Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)

Abstract

Nowadays, the massive amount of spatio-temporal data available exceeds the human capability to absorb them (i.e., to achieve insights). A possible approach to address this issue is through less detailed representations of phenomena so that the data complexity can be decreased making easier for the users to achieve meaningful insights. In this paper, we discuss the state of the art of modeling spatio-temporal phenomena at different levels of detail (LoDs). We found that granularities play an important role to hold spatio-temporal data at different LoDs. A novel granularity framework is proposed, allowing the definition of a granularity over any domain (including spatial and temporal granularities) as well as it allows transposing knowledge from the original domains to granularities (i.e., known relationships and its properties on the domain). Finally, a granularities-based model is proposed, based on the proposed granularity framework, for dealing and relate different LoDs of spatio-temporal data.

Keywords

spatial-temporal data multigranularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keim, D.A., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual Analytics: Definition, Process, and Challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy sets. Information and control 8(3), 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Parent, C., Spaccapietra, S., Vangenot, C., Zimányi, E.: Multiple Representation Modeling. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1844–1849. Springer US (1849)Google Scholar
  4. 4.
    Parent, C., Spaccapietra, S., Zimányi, E.: The MurMur project: Modeling and querying multi-representation spatio-temporal databases. Information Systems 31(8), 733–769 (2006)CrossRefGoogle Scholar
  5. 5.
    Zhou, X., Prasher, S., Sun, S., Xu, K.: Multiresolution Spatial Databases: Making Web-Based Spatial Applications Faster. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 36–47. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Weibel, R., Dutton, G.: Generalising spatial data and dealing with multiple representations. Geographical Information Systems 1, 125–155 (1999)Google Scholar
  7. 7.
    Stell, J., Worboys, M.: Stratified Map Spaces: A Formal Basis for Multi-resolution Spatial Databases. In: Proceedings 8th International Symposium on Spatial Data Handling, pp. 180–189 (1998)Google Scholar
  8. 8.
    Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Their Applications, Division on Engineering and Physical Sciences, National Research Council: Frontiers in Massive Data Analysis. National Academies Press (2013)Google Scholar
  9. 9.
    Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer (2000)Google Scholar
  10. 10.
    Camossi, E., Bertolotto, M., Bertino, E.: A multigranular object-oriented framework supporting spatio- temporal granularity conversions. International Journal of Geographical Information Science 20(5), 511–534 (2006)CrossRefGoogle Scholar
  11. 11.
    Belussi, A., Combi, C., Pozzani, G.: Formal and conceptual modeling of spatio-temporal granularities. In: Proceedings of the 2009 International Database Engineering & Applications Symposium on IDEAS 2009, p. 275 (2009)Google Scholar
  12. 12.
    Camossi, E., Bertolotto, M., Kechadi, T.: Mining Spatio-Temporal Data at Different Levels of Detail. In: The European Information Society, pp. 225–240. Springer (2008)Google Scholar
  13. 13.
    Pozzani, G., Zimányi, E.: Defining spatio-temporal granularities for raster data. In: MacKinnon, L.M. (ed.) BNCOD 2010. LNCS, vol. 6121, pp. 96–107. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Kisilevich, S., Mansmann, F., Nanni, M., Rinizivillo, S.: Spatio-Temporal clustering: a Survey. ISTI-CNR, Tech. rep. (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • João Moura Pires
    • 1
  • Ricardo Almeida Silva
    • 1
  • Maribel Yasmina Santos
    • 2
  1. 1.CENTRIA, Faculty of Science and TechnologyNew University of LisbonLisbonPortugal
  2. 2.ALGORITMI Research CentreUniversity of MinhoPortugal

Personalised recommendations