Advertisement

Attribute Handling for Generating Preconditions from Graph Constraints

  • Frederik Deckwerth
  • Gergely Varró
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8571)

Abstract

This paper presents a practical attribute handling approach for generating rule preconditions from graph constraints. The proposed technique and the corresponding correctness proof are based on symbolic graphs, which extend the traditional graph-based structural descriptions by logic formulas used for attribute handling. Additionally, fully declarative rule preconditions are derived from symbolic graphs, which enable automated attribute resolution as an integral part of the overall pattern matching process, which carries out the checking of rule preconditions at runtime in unidirectional model transformations.

Keywords

static analysis rule preconditions attribute handling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer (2006)Google Scholar
  2. 2.
    Heckel, R.: Compositional verification of reactive systems specified by graph transformation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 138–153. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Koch, M., Mancini, L.V., Parisi-Presicce, F.: A graph-based formalism for RBAC. ACM Trans. Inf. Syst. Secur. 5(3), 332–365 (2002)CrossRefGoogle Scholar
  4. 4.
    Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting – a constructive approach. In: Corradini, A., Montanari, U. (eds.) Proc. of Joint COMPUGRAPH/SEMAGRAPH Workshop. ENTCS, vol. 2, pp. 118–126. Elsevier, Volterra (1995)Google Scholar
  5. 5.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Synthesis of OCL pre-conditions for graph transformation rules. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 45–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Orejas, F., Lambers, L.: Delaying constraint solving in symbolic graph transformation. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 43–58. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced graph patterns. In: Ehrig, K., Giese, H. (eds.) Proc. of the 6th International Workshop on Graph Transformation and Visual Modeling Techniques, Braga, Portugal. Electronic Communications of the EASST, vol. 6 (March 2007)Google Scholar
  9. 9.
    Anjorin, A., Varró, G., Schürr, A.: Complex attribute manipulation in TGGs with constraint-based programming techniques. In: Hermann, F., Voigtländer, J. (eds.) Proc. of the 1st Int. Workshop on Bidirectional Transformations. ECEASST, vol. 49 (2012)Google Scholar
  10. 10.
    Shoenfield, J.R.: Mathematical logic, vol. 21. Addison-Wesley, Reading (1967)Google Scholar
  11. 11.
    Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transformation. In: Ermel, C., Ehrig, H., Orejas, F., Taentzer, G. (eds.) Proc. of the ICGT. Electronic Communications of the EASST, vol. 30 (2010)Google Scholar
  12. 12.
    Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generating model-sensitive search plans for pattern matching on EMF models. Software and Systems Modeling (2013) (accepted paper)Google Scholar
  13. 13.
    Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods (Ehrig Festschrift). LNCS, vol. 3393, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H.: Constraints and application conditions: From graphs to high-level structures. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta Informaticae 118(1), 135–175 (2012)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Frederik Deckwerth
    • 1
  • Gergely Varró
    • 1
  1. 1.Real-Time Systems LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations