Verifying Monadic Second-Order Properties of Graph Programs

  • Christopher M. Poskitt
  • Detlef Plump
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8571)


The core challenge in a Hoare- or Dijkstra-style proof system for graph programs is in defining a weakest liberal precondition construction with respect to a rule and a postcondition. Previous work addressing this has focused on assertion languages for first-order properties, which are unable to express important global properties of graphs such as acyclicity, connectedness, or existence of paths. In this paper, we extend the nested graph conditions of Habel, Pennemann, and Rensink to make them equivalently expressive to monadic second-order logic on graphs. We present a weakest liberal precondition construction for these assertions, and demonstrate its use in verifying non-local correctness specifications of graph programs in the sense of Habel et al.


Graph Transformation Graph Program Injective Morphism Model Check Problem Nest Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Pennemann, K.H.: Development of Correct Graph Transformation Systems. Doctoral dissertation, Universität Oldenburg (2009)Google Scholar
  3. 3.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Mathematical Structures in Computer Science 19(2), 245–296 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta Informaticae 118(1-2), 135–175 (2012)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Poskitt, C.M.: Verification of Graph Programs. PhD thesis, University of York (2013)Google Scholar
  6. 6.
    Plump, D.: The design of GP 2. In: Escobar, S. (ed.) WRS 2011. EPTCS, vol. 82, pp. 1–16 (2012)Google Scholar
  7. 7.
    Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press (2012)Google Scholar
  8. 8.
    Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph programs: Extended version (2014),
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  10. 10.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B. Elsevier (1990)Google Scholar
  12. 12.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer (2006)Google Scholar
  13. 13.
    Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. In: Echahed, R., Habel, A., Mosbah, M. (eds.) GCM 2012. Electronic Communications of the EASST, vol. 61 (2013)Google Scholar
  14. 14.
    Habel, A., Radke, H.: Expressiveness of graph conditions with variables. In: Ermel, C., Ehrig, H., Orejas, F., Taentzer, G. (eds.) GraMoT 2010. Electronic Communications of the EASST, vol. 30 (2010)Google Scholar
  15. 15.
    Radke, H.: HR* graph conditions between counting monadic second-order and second-order graph formulas. In: Echahed, R., Habel, A., Mosbah, M. (eds.) GCM 2012. Electronic Communications of the EASST, vol. 61 (2013)Google Scholar
  16. 16.
    Percebois, C., Strecker, M., Tran, H.N.: Rule-level verification of graph transformations for invariants based on edges’ transitive closure. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 106–121. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verification using monadic second-order logic. In: Schneider-Kamp, P., Hanus, M. (eds.) PPDP 2011, pp. 17–28. ACM (2011)Google Scholar
  18. 18.
    Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. Software Tools for Technology Transfer 14(1), 15–40 (2012)CrossRefGoogle Scholar
  19. 19.
    König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of graph transformation systems. In: Bruni, R., Varró, D. (eds.) GT-VMT 2006. ENTCS, vol. 211, pp. 201–210 (2008)Google Scholar
  20. 20.
    Pennemann, K.H.: Resolution-like theorem proving for high-level conditions. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 289–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christopher M. Poskitt
    • 1
  • Detlef Plump
    • 2
  1. 1.Department of Computer ScienceETH ZürichSwitzerland
  2. 2.Department of Computer ScienceThe University of YorkUK

Personalised recommendations