Advertisement

Van Kampen Squares for Graph Transformation

  • Harald König
  • Michael Löwe
  • Christoph Schulz
  • Uwe Wolter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8571)

Abstract

This paper demonstrates the benefits of a recent result by the authors, proving a necessary and sufficient condition for a pushout of two morphisms to be a Van Kampen Square, even if both morphisms are not monomorphisms. The theorem can be applied in categories that are based on graph structure signatures. We discuss its value in the context of general views on co-transformations and illustrate an application in a software co-evolution scenario.

Keywords

Van Kampen Square Co-Transformation Co-Evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambler, S.: Refactoring Databases: Evolutionary Database Design. Addison-Wesley (2006)Google Scholar
  2. 2.
    Brown, R., Janelidze, G.: Van Kampen Theorems for Categories of Covering Morphisms in Lextensive Categories. Journal of Pure and Applied Algebra 119, 255–263 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating Co-Evolution in Model-Driven Engineering. In: Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing Conference, EDOC 2008, pp. 222–231. IEEE Computer Society, Washington, DC (2008), http://dx.doi.org/10.1109/EDOC.2008.44 CrossRefGoogle Scholar
  4. 4.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-Pushout Rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of Attributed Structures with Cloning (long version). CoRR abs/1401.2751 (2014)Google Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformations. Springer (2006)Google Scholar
  7. 7.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fiadeiro, J.L.: Categories for Software Engineering. Springer (2005)Google Scholar
  9. 9.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover Publications (1984)Google Scholar
  10. 10.
    Heindel, T., Sobociński, P.: Van Kampen Colimits as Bicolimits in Span. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 335–349. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03741-2_23 CrossRefGoogle Scholar
  11. 11.
    Heumüller, M., Joshi, S., König, B., Stückrath, J.: Construction of Pushout Complements in the Category of Hypergraphs. ECEASST 39 (2011)Google Scholar
  12. 12.
    Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.: Bidirectional Transformation “bx” (Dagstuhl Seminar 11031). Dagstuhl Reports 1(1), 42–67 (2011), http://drops.dagstuhl.de/opus/volltexte/2011/3144 Google Scholar
  13. 13.
    König, H., Löwe, M., Schulz, C.: Model Transformation and Induced Instance Migration: A Universal Framework. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lack, S., Sobociński, P.: Toposes are Adhesive. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 184–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Löwe, M.: Van-Kampen Pushouts for Sets and Graphs. Technical Report. FHDW Hannover 4 (2010)Google Scholar
  16. 16.
    Löwe, M.: Refined Graph Rewriting in Span-Categories - A Framework for Algebraic Graph Transformation. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 111–125. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Löwe, M., König, H., Schulz, C., Schultchen, M.: Algebraic Graph Transformations with Inheritance. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 211–226. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Mantz, F., Taentzer, G., Lamo, Y.: Co-Transformation of Type and Instance Graphs Supporting Merging of Types and Retyping. ECEASST 61 (2013)Google Scholar
  19. 19.
    Müller, J.: Shifting Derivations of non-injective Rules in the Algebraic Graph Rewriting Approaches. Techn. Report. TU, Berlin 16 (1997)Google Scholar
  20. 20.
    Schuerr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Taentzer, G., Mantz, F., Lamo, Y.: Co-Transformation of Graphs and Type Graphs with Application to Model Co-Evolution. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 326–340. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-33654-6_22 CrossRefGoogle Scholar
  22. 22.
    Wolter, U., Diskin, Z.: From Indexed to Fibred Semantics – The Generalized Sketch File –. Reports in Informatics 361. Dep. of Informatics, University of Bergen (2007)Google Scholar
  23. 23.
    Wolter, U., König, H.: Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi. Applied Categorical Structures, 1–40 (2013), http://dx.doi.org/10.1007/s10485-013-9339-2

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harald König
    • 1
  • Michael Löwe
    • 1
  • Christoph Schulz
    • 1
  • Uwe Wolter
    • 2
  1. 1.FHDW HannoverUniversity of Applied SciencesHannoverGermany
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations