Advertisement

Reversible Sesqui-Pushout Rewriting

  • Vincent Danos
  • Tobias Heindel
  • Ricardo Honorato-Zimmer
  • Sandro Stucki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8571)

Abstract

The paper proposes a variant of sesqui-pushout rewriting (SqPO) that allows one to develop the theory of nested application conditions (NACs) for arbitrary rule spans; this is a considerable generalisation compared with existing results for NACs, which only hold for linear rules (w.r.t. a suitable class of monos). Besides this main contribution, namely an adapted shifting construction for NACs, the paper presents a uniform commutativity result for a revised notion of independence that applies to arbitrary rules; these theorems hold in any category with (enough) stable pushouts and a class of monos rendering it weak adhesive HLR. To illustrate results and concepts, we use simple graphs, i.e. the category of binary endorelations and relation preserving functions, as it is a paradigmatic example of a category with stable pushouts; moreover, using regular monos to give semantics to NACs, we can shift NACs over arbitrary rule spans.

Keywords

Simple Graph Graph Transformation Rule Application Linear Rule Arbitrary Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Unfolding Grammars in Adhesive Categories. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 350–366. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Braatz, B., Golas, U., Soboll, T.: How to delete categorically Two pushout complement constructions. Journal of Symbolic Computation 46(3), 246–271 (2011); Applied and Computational Category TheoryGoogle Scholar
  3. 3.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation. Part I: Basic Concepts and Double Pushout Approach. In: Handbook of Graph Grammars and Computing by Graph Transformation, pp. 163–245. World Scientific Publishing Co., Inc., River Edge (1997)CrossRefGoogle Scholar
  4. 4.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout Rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: Exact and automated model reduction. In: 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 362–381 (July 2010)Google Scholar
  6. 6.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  7. 7.
    Duval, D., Echahed, R., Prost, F.: Graph rewriting with polarized cloning. CoRR abs/0911.3786 (2009)Google Scholar
  8. 8.
    Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. Journal of Pure and Applied Algebra 49(1-2), 103–116 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ehrig, H., Golas, U., Hermann, F.: Categorical Frameworks for Graph Transformation and HLR Systems Based on the DPO Approach. Bulletin of the EATCS 102, 111–121 (2010)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ehrig, H., Habel, A., Lambers, L.: Parallelism and concurrency theorems for rules with nested application conditions. ECEASST 26 (2010)Google Scholar
  11. 11.
    Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories. Theory and Applications of Categories 27(3), 27–46 (2012)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Habel, A., Müller, J., Plump, D.: Double-pushout Graph Transformation Revisited. Mathematical Structures in Computer Science 11(5), 637–688 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Mathematical Structures in Computer Science 19(2), 245–296 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hayman, J., Heindel, T.: Pattern graphs and rule-based models: The semantics of kappa. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 1–16. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Heindel, T., Sobociński, P.: Being Van Kampen is a universal property. Logical Methods in Computer Science 7(1) (2011)Google Scholar
  16. 16.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theoretical Informatics and Applications 39(3), 511–545 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Löwe, M.: Refined graph rewriting in span-categories: A framework for algebraic graph transformation. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 111–125. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Monserrat, M., Rosselló, F., Torrens, J., Valiente, G.: Single-pushout rewriting in categories of spans I: The general setting. Tech. rep., Informe d’investigació, Department of Software (LSI) Universitat Politècnica de Catalunya (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vincent Danos
    • 1
  • Tobias Heindel
    • 1
  • Ricardo Honorato-Zimmer
    • 1
  • Sandro Stucki
    • 2
  1. 1.School of InformaticsUniversity of EdinburghUK
  2. 2.Programming Methods LaboratoryEPFLLausanneSwitzerland

Personalised recommendations