Investigating Rock Fall Frequency and Failure Configurations Using Terrestrial Laser Scanner

  • Julie D’Amato
  • Antoine Guerin
  • Didier Hantz
  • Jean-Pierre Rossetti
  • Michel Jaboyedoff
Conference paper

Abstract

Terrestrial laser scanner has been used to detect rock falls greater than 0.01 m3 which have occurred during some years in different rock walls consisting of massive to thin-bedded limestones of the Subalpine Chains and gneiss of the Massif de l’Oisans. For each rock wall, spatial-temporal rock fall frequencies have been determined and the volume-frequency relation has been fitted with a power law. The influence of the geological context on the power law parameters has been studied. These parameters can be used for quantitative assessment of diffuse hazard in rock walls having similar geological and morphodynamic contexts. The geometrical configurations prior to rock fall have also been studied in order to better identify the future rock fall locations. Prone to fall configurations depend on the rock mass internal structure and the wall surface geometry.

Keywords

Rock fall Frequency Hazard Terrestrial laser scanner Lidar 

References

  1. Abellan A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171CrossRefGoogle Scholar
  2. Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlin Process Geophys 16:179–188CrossRefGoogle Scholar
  3. Dewez TJB, Rohmer J, Regard V, Cnudde C (2013) Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France). J Coastal Res 65:702–707Google Scholar
  4. Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Jeannin M, Giraud A (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26CrossRefGoogle Scholar
  5. Gidon M (1990) Les décrochements et leur place dans la structuration du Massif de la Chartreuse (Alpes occidentales françaises). Géologie Alpine, 66Google Scholar
  6. Guerin A, Rossetti JP, Hantz D, Jaboyedoff M (2013) Estimating rock fall frequency in a limestone cliff using LiDAR measurements. ICRL13, TunisiaGoogle Scholar
  7. Hantz H, Vengeon JM, Dussauge-Peisser C (2003) An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3:693–701CrossRefGoogle Scholar
  8. Lim M, Rosser NJ, Allison RJ, Petley DN (2010) Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire. Geomorphology 114:12–21CrossRefGoogle Scholar
  9. Rabatel A, Deline P, Jaillet S, Ravanel L (2008) Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: a case study in the mont blanc area. Geophys Res Lett 35:L10502. doi:10.1029/2008GL033424 CrossRefGoogle Scholar
  10. Ravanel L, Deline P, Lambiel C, Vincent C (2012) Instability of a high alpine rock ridge: The lower Arête des Cosmiques, Mont Blanc massif, France. Geografiska Annaler, Series A, Physical Geography, doi:10.1111/geoa.12000

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julie D’Amato
    • 1
  • Antoine Guerin
    • 2
  • Didier Hantz
    • 1
  • Jean-Pierre Rossetti
    • 1
  • Michel Jaboyedoff
    • 2
  1. 1.ISTerreUniversité Grenoble AlpesGrenobleFrance
  2. 2.Centre de Recherche sur l’Environnement TerrestreUniversité de LausanneLausanneSwitzerland

Personalised recommendations