The Cerro Caquilluco–Cerrillos Negros Giant Rock Avalanches (Tacna, Peru)

  • Giovanni B. CrostaEmail author
  • Frattini Paolo
  • Valbuzzi Elena
  • Reginald L. Hermanns
Conference paper


Giant rock avalanches have been recognized and mapped in southern Peru, to the N of Tacna. The Cerro Caquilluco rock avalanche complex has a total volume of about 15 km3 and a length of 43 km, extending from 3,900 to 530 m a.s.l.. Mapping the internal structures, the scar features and the depositional lobes allowed to suggest that the rock avalanche complex developed as a sequence of successive failures affecting tuffaceous and conglomeratic formations forming a gently dipping monoclinalic slope. Assessment of lobes volume constrained the reconstruction of the source areas for the multiple failures and the successive rock avalanche simulations. Seismic triggering is suggested, whereas H/L vs volume relationships suggest a high mobility comparable to that of extremely mobile volcanic rock avalanches.


Rock avalanche Failure sequence 3D runout simulation Peru 


  1. Acosta H, Alván A, Mamani M, Oviedo M, Rodriguez J (2010) Geología de los cuadrángulos de Pachía (36-v) y Palca (36-x), escala 1:50 000. INGEMMET, Bol., Serie A: Carta Geológica Nacional, 139, 100p., 7 mapasGoogle Scholar
  2. Audin L, Bechir A (2006) Active tectonics as determinant factor in landslides along the Western Cordillera? Presented at the Congreso Peruano de Geologia, 13, Lima, Resumenes extendidos, Soc Geol del Peru xxii:237–239Google Scholar
  3. Crosta G, Hermanns RL, Valbuzzi E, Dehls J, Yugsi Molina FX, Sepulveda S (2012) Slope instabilities along the Western Andean Escarpment and the main canyons in Northern Chile. Geophysical Research Abstracts 14, EGU2012-11343Google Scholar
  4. Crosta G, Hermanns RL, Murillo PV (2012) Large rock avalanches in southern Peru: the Cerro Caquilluco–Cerrillos Negros rock slide—avalanche (Tacna, Tomasiri, Peru) EGU2012-11469Google Scholar
  5. Crosta GB, Hermanns RL, Frattini P, Valbuzzi E (2014) Large slope instabilities in Northern Chile: inventory, characterization and possible triggerings. In: Proceedings of the 3rd world landslide Forum, 2–6 June 2014, Bejing, p 6Google Scholar
  6. David C, Audin L, Comte D, Tavera H, Hérail G, (2005) Crustal seismicity and active tectonics in the Arica bend forearc. 6th international symposium on Andean Geodynamics (ISAG 2005, Barcelona), Ext. Abstracts: 206–210Google Scholar
  7. Farias M, Charrier R, Comte D, Martinod J, Herail G (2005) Late Cenozoic deformation and uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19° 30’S). Tectonics 24:4CrossRefGoogle Scholar
  8. Hall SR, Farber DL, Audin L, Finkel RC (2012) Recently active contractile deformation in the forearc of southern Peru. Earth Planet Sci Lett 337–338(2012):85–92CrossRefGoogle Scholar
  9. Hoke GD, Isacks BL, Jordan TE, Blanco N, Tomlinson AJ, Ramezani J (2007) Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30’–22°S. Tectonics 26, TC5021Google Scholar
  10. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three dimensional terrain. Can Geotech J 41:1084–1097CrossRefGoogle Scholar
  11. Sosio R, Crosta GB, Chen JH, Hungr O (2012) Modelling rock avalanche propagation onto glaciers. Quatern Sci Rev 47:23–40CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giovanni B. Crosta
    • 1
    Email author
  • Frattini Paolo
    • 1
  • Valbuzzi Elena
    • 1
  • Reginald L. Hermanns
    • 2
  1. 1.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Norwegian Geological Survey (NGU)TrondheimNorway

Personalised recommendations